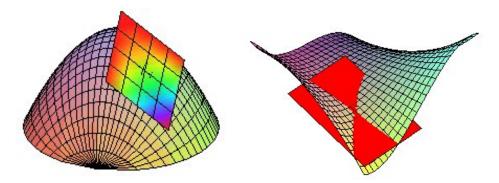
1. © Planos tangentes a superficies.



Plano tangente a una superficie

Teorema: El plano tangente a la gráfica de una función diferenciable z = f(x, y) en el punto (x_0, y_0, z_0) tiene como ecuación

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Corolario: El plano tangente a la gráfica de de una función diferenciable z = f(x, y) en el punto (x_0, y_0, z_0) , definida implícitamente por la función diferenciable F(x, y, z) = 0 en el punto $P_0(x_0, y_0, z_0)$ tiene como ecuación:

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

- 2. \checkmark Es geométricamente evidente que todos los planos tangentes al cono $z=\sqrt{x^2+y^2}$ pasan por el origen. Demostrar esto usando las técnicas del Cálculo.
- 3. \checkmark Encontrar todos los puntos de la superficie $z = g(x,y) = \frac{3}{4}y^2 + \frac{1}{24}y^3 \frac{1}{32}y^4 x^2$ donde el plano tangente es horizontal.
- 4. \checkmark Hallar la ecuación del plano tangentes a la gráfica de la función $z = f(x, y) = x^2 + y^2$ en un punto genérico (x_0, y_0, z_0) . ¿En qué punto(s) es el plano tangente paralelo al plano x = z?
- 5. © ¿Cuál es la ecuación paramétrica de la recta normal a la superficie F(x, y, z) = 0 en su punto (x_0, y_0, z_0) ?
- 6. \checkmark Determinar la distancia al origen de la recta normal al paraboloide de ecuación $z = 3x^2 + 4y^2$, en su punto $P_0(2, -\sqrt{3}, 24)$.