

Tema: Modelos exp-log.

Capacidades:

Manejar conceptos y propiedades de las funciones exponenciales y logarítmicas y resolver situaciones problemáticas contextualizadas que son modeladas por estas funciones.

Temas: Función exponencial. Función logarítmica. Algunas propiedades de los logaritmos. Algunos modelos de crecimiento/decrecimiento.

1. Introducción

Dos de la funciones más importantes que se presentan en el estudio de las aplicaciones de la matemática son la función exponencial $y = a^x$, y su inversa, la función logarítmica $y = \log_a x$.

La relevancia de estas funciones radica en el hecho que muchas y variadas situaciones de la realidad, pueden ser modeladas por ellas: sonoridad de un sonido, crecimiento de poblaciones, evolución de la temperatura de un cuerpo, desintegración de elementos radioactivos, magnitud de sismos, medición del aprendizaje, acumulación de intereses bancarios, etc.

2. Problema inicial: Interés compuesto

Si se hace un depósito de C en un banco que ofrece un i% de interés compuesto anualmente, determinar el modelo funcional del monto acumulado, M, después de t años.

$$\mathbf{M} = \mathbf{M}(\mathbf{t}) = \mathbf{C} \left(\mathbf{1} + rac{\mathbf{i}}{\mathbf{100}} \right)^{\mathbf{t}}$$

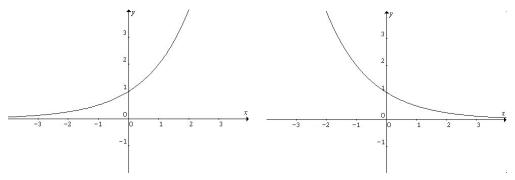
 $Monto\ acumulado\ a\ partir\ de\ \$1000\ con\ inter\'es\ del\ 5\ \%\ compuesto\ anualmente$

500

3. Función exponencial

Una función exponencial con base a, tiene la forma

$$f(x) = a^x, \text{ con } a > 0, \ a \neq 1$$



$$f(x) = a^x, \ a > 1$$
 $f(x) = a^x, \ 0 < a < 1$

Propiedades de la función exponencial

- El dominio de una función exponencial es \mathbb{R} , su recorrido es \mathbb{R}^+ .
- La función exponencial es biyectiva.
- La gráfica de toda función exponencial intersecta al eje Y en (0,1) debido a que $a^0=1$, para todo $a\neq 0$. Con el eje X no hay intersección.
- La función exponencial es creciente cuando a > 1 y decreciente cuando 0 < a < 1.
- Una base que se utiliza con frecuencia en las funciones exponenciales es el número irracional e, donde $e \approx 2,71828$.

4. Función logarítmica

Como se acaba de recordar, toda función exponencial

$$f: \mathbb{R} \longrightarrow \mathbb{R}^+$$
$$x \longmapsto y = f(x) = a^x$$

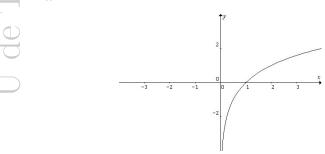
es biyectiva, y por lo tanto tiene inversa:

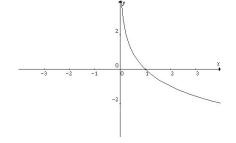
$$f^{-1}: \mathbb{R}^+ \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f^{-1}(x)$

esta función inversa recibe el nombre de función logarítmica, y se anota como $\log_a x$. Así entonces,

Una función logarítmica con base a, tiene la forma $f(x) = \log_a x$, con a > 0, $a \neq 1$





$$f(x) = \log_a x, \ a > 1$$

$$f(x) = \log_a x, \ 0 < a < 1$$

Propiedades de la función logarítmica

- El dominio de la función logarítmica es \mathbb{R}^+ , el recorrido es \mathbb{R} .
- La función logarítmica es biyectiva.
- La gráfica de cualquier función logarítmica intersecta al eje X en (1,0) debido a que $\log_a 1 = 0$. Con el eje Y no hay intersección.
- La función logarítmica es creciente cuando a > 1 y decreciente cuando 0 < a < 1.
- Como la función logarítmica es la función inversa de la exponencial, y viceversa:

$$\log_a x = b \iff a^b = x$$

→ A los logaritmos con base e se les llama logaritmos naturales y se denotan por ln, a los de base 10 se les denomina logaritmos comunes y se les simboliza por log. Es decir,

$$\log_e x = \ln x \qquad \qquad \log_{10} x = \log x$$

Luego,

$$y = \log x \qquad \iff \qquad x = 10^y$$

 $y = \ln x \qquad \iff \qquad x = e^y$

4.1. Algunas propiedades de los logaritmos

Para valores apropiados, se cumple que:

1.

$$\log_a(bc) = \log_a b + \log_a c$$

$$\log_a \left(\frac{b}{c}\right) = \log_a b - \log_a c$$

3.

$$\log_a b^c = c \log_a b$$

4. Si

$$\log_a b = \log_a c$$

, entonces b = c

de Talca

6.

$$\log_a a^b = b$$

En particular, $\log 10^x = x$ y $\ln e^x = x$.

$$a^{\log_a b} = b$$

En particular
$$10^{\log x} = x$$
 y $e^{\ln x} = x$

8. Cambio de base:

$$\log_a b = \frac{\log_c b}{\log_c a}$$

Algunos modelos de crecimiento/decrecimiento 5.

Modelo de crecimiento/decrecimiento exponencial (geométrico)

Principio: Una población de tamaño P crece a una tasa que es proporcional al tamaño de dicha población.

Luego, si P = P(t) representa el número de individuos de una determinada población en el tiempo t, entonces la función que modela esta situación es:

$$P = P_0 e^{kt}$$

donde $P = P_0$ en t = 0.

Cuando k > 0, P crece y cuando k < 0, P decrece.

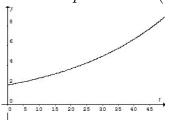


Gráfico de $y = 2e^{0.03x}$

Crecimiento exponencial (k > 0) Decrecimiento exponencial (k < 0)

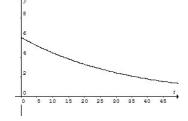


Gráfico de $y = 6e^{-0.03x}$

5.2. Modelo de crecimiento logístico

Principio: Una población de tamaño P crece a una tasa que es proporcional al producto del tamaño de dicha población con la diferencia entre el tamaño máximo posible de la población y el tamaño de dicha población.

Luego, si P = P(t) representa el número de individuos de una determinada población en el tiempo t, entonces la función que modela esta situación es:

$$P = \frac{MP_0}{P_0 + (M - P_0)e^{-kMt}}$$

donde $P = P_0$ en t = 0. M representa el máximo número de individuos que la población puede alcanzar.

Es claro que la función de crecimiento también se puede escribir como:

$$P = \frac{M}{1 + Ae^{-kMt}} \quad \text{donde} \quad A = \frac{M - P_0}{P_0}$$

Crecimiento logístico

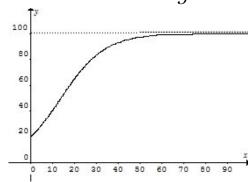


Gráfico de
$$y = \frac{20 \cdot 100}{20 + 80e^{-0.01 \cdot 100 \cdot t}}$$

5.3. Ley de enfriamiento/calentamiento de Newton

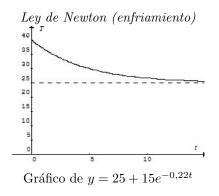
Este modelo permite conocer como evoluciona la temperatura de un objeto.

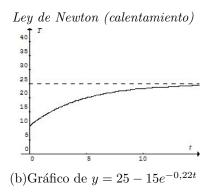
Principio: La razón de cambio de la temperatura T = T(t) de un cuerpo con respecto al tiempo t es proporcional a la diferencia entre la temperatura T del cuerpo y la temperatura t_m del medio ambiente.

Luego, si T = T(t) representa la temperatura de un cuerpo en el instante t, entonces la función que modela esta situación es:

$$T = T(t) = t_m + (t_0 - t_m)e^{-kt}$$

donde t_0 es la temperatura inicial del cuerpo (es decir, cuando t=0), t_m es la temperatura del medio ambiente y k es una constante positiva que depende de la situación en estudio.





6. Ejemplos

- 1. En la relación $i = 1.5e^{-200t}$, se pide:
 - a) Encontrar el valor de i cuando t = -0.001.
 - b) Encontrar el valor de t cuando i=1.

Desarrollo:

a)
$$t = -0.001$$
 \Rightarrow $i = 1.5e^{(-200)\cdot(-0.001)}$ \Rightarrow $i \approx 1.8$

b)
$$i = 1 \implies 1 = 1.5e^{-200t} \implies t \approx 0.002$$

2. Resolver la siguiente ecuación logarítmica

$$\log_8(x-6) + \log_8(x+6) = 2$$

Desarrollo:

Como el dominio de la función logarítmica es \mathbb{R}^+ , se tiene que las soluciones de esta ecuación, de tenerlas, deben cumplir x-6>0 y x+6>0, es decir, x>6.

$$\log_8(x-6) + \log_8(x+6) = 2$$

$$\log_8(x-6)(x+6) = 2$$

$$\log_8(x^2 - 36) = 2$$

$$x^2 - 36 = 8^2$$

$$x^2 = 100$$

$$x = \pm 10$$

Como x debe ser mayor que 6, la única solución de la ecuación propuesta es x=10.

- 3. Supóngase que una población experimental de moscas de la fruta aumenta de acuerdo con la ley de crecimiento exponencial. Si al inicio hay 100 moscas y 4 días después hay 600 moscas:
 - a) Determinar la función que modela la situación planteada.
 - b) ¿Cuántas moscas habrán en el décimo día?
 - c) ¿Después de cuántos días habrán 20000 moscas?

Desarrollo:

a) La función que modela esta situación tiene la forma $P = P(t) = P_0 e^{kt}$, donde P representa el tamaño de la población de moscas y t la cantidad de días transcurridos.

Como P(0) = 100: $100 = P_0 e^{k \cdot 0} = P_0 \implies P_0 = 100$. Luego, $P = 100e^{kt}$

Como
$$P(4) = 600$$
: $600 = 100e^{k \cdot 4} \implies k \approx 0.45$

Por lo tanto, la función que modela la situación es $P=P(t)=100e^{0.45t} \label{eq:port}$

- b) Para el día décimo: $P=100e^{0,45\cdot 10}\approx 9002$. Luego, en el día décimo hay, aproximadamente, 9002 moscas.
- c) $20000 = 100e^{0.45t} \implies t \approx 12$. Luego, después de 12 días hay, aproximadamente, 20000 moscas.

- 4. El número de bacterias, y, en un cultivo en un tiempo t (en días) está dado por la función $y=50\mathrm{e}^{2t}$
 - a) ¿Cuál es el número de bacterias en el instante inicial (t=0)?
 - b) ¿En qué momento el número de bacterias será el doble del inicial?

Solución:

- a) Cuando t=0, se tiene $y=50e^{(2)(0)}=50e^0=50$. Luego, en t=0 hay 50 bacterias.
- b) La colonia tendrá 100 (que corresponde al doble del original) bacterias cuando t satisfaga la relación: 100 = $50e^{2t}$.

De donde, $e^{2t} = 2$, aplicando logaritmo natural se tiene: $2t = \ln 2$, luego $t \approx 0,346$

Por lo tanto, en aproximadamente 0,346 días =8,32 horas la colonia se duplica.

5. Suponer que una habitación se mantiene a una temperatura constante de 70° y que un objeto se enfría de 350° a 150° en 45 minutos. ¿Qué tiempo se necesitará para enfriar dicho objeto hasta una temperatura de 80°?

Solución:

Sean t la variable que representa el tiempo (medido en minutos) y T la variable que representa la temperatura (en °C) del objeto en el instante t.

Luego, de la Ley de enfriamiento de Newton y como la temperatura del medio ambiente es de 70° y la temperatura inicial del objeto es de 350°:

$$T = 70 + (350 - 70)e^{-kt}$$
, es decir $T = 70 + 280e^{-kt}$

Como en t = 45, $T = 150^{\circ}$, se tiene que : $150 = 70 + 280e^{-k \cdot 45}$.

De donde
$$k=\frac{\ln(2/7)}{45}\approx 0,028$$
. Por lo tanto: $T=70+280e^{-0,028t}$

Ahora bien, para encontrar el tiempo t en el cual el cuerpo llega a la temperatura de 80°, reemplazamos T por 80 en la relación precedente y despejamos t. Al hacerlo, se obtiene que $t \approx 119$ minutos.

Por lo tanto, aproximadamente después de 119 minutos, la temperatura del cuerpo es de 80°.

7. Desafío

Calcular el valor de cada una de las siguientes expresiones:

1.

$$\ln\left(1+\frac{1}{2}\right) + \ln\left(1+\frac{1}{3}\right) + \dots + \ln\left(1+\frac{1}{2015}\right)$$

2.

$$\log_3 2 \cdot \log_4 3 \cdot \log_5 4 \cdot \ldots \cdot \log_{2016} 2015$$