TEMA: Idea intuitiva de Límite (1^{era} parte)

Introducción:

El cálculo infinistesimal es una rama de la matemática que se abre con un nuevo concepto: **límite de una FRVR**, el que permitirá abordar y resolver problemas más generales que los trabajados hasta este momento. Veamos, por ejemplo, algunos problemas ya resueltos junto a los que ahora podremos resolver:

Antes	Concepto de límite	Después
Calcular la pendiente de una recta	\Longrightarrow	Calcular la pendiente de una curva
Calcular una recta que pasa por dos puntos de una curva	\implies	Calcular la tangente a una curva
Calcular la altura de una curva en $x = c$	\implies	Calcular la altura máxima de una curva en un intervalo
Calcular el área de un rectángulo	\Longrightarrow	Calcular el área límitada por: arriba: gráfico de $y = f(x)$ abajo : Eje X izquierda : $x = a$ derecha : $x = b$
Longitud de un segmento	\Rightarrow	Longitud de una porción de curva
Sumar un n£mero finito de términos		Sumar un número infinito de términos.
etc.		

Estudiar el comportamiento de la función $y = f(x) = \frac{x^3-1}{x-1}$; $x \neq 1$ (Notar que $1 \notin Domf$) en las cercanías de x_1 .

1. En este estudio lo que interesa es el comportamiento de f cerca de x=1 (matemáticamente, esto se dice: en una vecindad de x=1). Para esto nos acercamos al punto x=1 tanto por la izquierda como por la derecha.

Por la izquierda:

Por la derecha:

Usando la información de las tablas precedentes; responder:

- a) ¿Cuándo nos **acercamos** a x = 1 por la izquierda, hacia dónde se **acercan las imágenes**?
- b) idem por la derecha.
- c) ¿Qué se puede concluir?

La conclusión recién aludida es:

"f(x) se acerca a 3, cuando x se acerca a 1"

lo que también se puede anotar:

$$f(x) \longrightarrow 3$$
, cuando $x \longrightarrow 1$

o bien;

$$(x \longrightarrow 1) \Rightarrow (f(x) \longrightarrow 3)$$

o bien;

$$\begin{array}{ccc} f(x) & \longrightarrow & 3 \\ & x \to 1 \end{array}$$

En las relaciones precedentes al número 3 se le da el nombre de **límite de** f(x) **cuando** $x \to 1$ y se anota

$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = 3$$

Importante: Observar que en este estudio no interesa el comportamiento de la función en el punto, si no a su alrededor.

NO OLVIDAR ESTO!

2. Repetir el ejercicio precedente con la función

$$y = f(x) = \begin{cases} x - 1 & \text{si } x < 2 \\ x^2 + 2 & \text{si } x \ge 2 \end{cases}$$
 (1)

en el punto x = 2.

¿Hay alguna diferencia entre las conclusiones de este ejercicio con el anterior? Comentar.

Nota 1. En este caso se tiene que

$$(x \to 2+) \longrightarrow (f(x) \to 1)$$

$$(x \to 2-) \longrightarrow (f(x) \to 6)$$

Lo que se anota:

$$\lim_{x \to 2+} f(x) = 6 \; ; \; \lim_{x \to 2-} f(x) = 1$$

y se llaman **límites laterales de** f(x) **en** x = 2 (por la derecha e izquierda respectivamente).

Resultado Importante:

 $\lim_{x\to a} f(x)$ existe si y solo si los límites laterales existen y son iguales entre si

es decir

$$\lim_{x \to a+} f(x) = \lim_{x \to a-} f(x) = L$$

Notar que cuando $\lim_{x\to a-} f(x) \neq \lim_{x\to a+} f(x)$ o uno de ellos no existe, entonces no existe $\lim_{x\to a} f(x)$

- 3. Considerar ahora la función: $y = f(x) = \frac{x+1}{\sqrt{x-10}}$
 - a) "Cómo se comporta esta función en x = 10?
 - b) Determinar el dominio de f.
 - c) Estudiar el comportamiento de f, cuando x se **acer- ca** a x = 10 por la izquierda y por la derecha. ¿Qué puede concluir?
- 4. Realiza un análisis similar para, determinar si existe el límite de la función dada en el punto propuesto.

a)
$$f(x) = \frac{x-2}{x^2-4}$$
 ; $x=2$

b)
$$g(x) = \frac{\sin x}{x}$$
 ; $x = 0$, x en radianes

c)
$$h(x) = (1+x)^{\frac{1}{x}}$$
 ; $x=0$

d)
$$k(x) = \frac{x}{\sqrt{x+1}-1}$$
 ; $x = 0$ *

e)
$$l(y) = \frac{|y-5|}{y-5}$$
 ; $y=5$

f)
$$m(z) = \frac{1 - \cos z}{z}$$
 ; $z = 0$

(*) Notar que aquí k(x) esta definida solo para $x \ge -1$, lo que es suficiente para estudiar su comportamiento en una vecindad de x=0