
CdP

# Límites III

Temas: Introducción. Límites al infinito. Límites infinitos.

### 1. Límites infinitos



¿qué sucede cuando  $x \longrightarrow 2$ ?

1. ¿Qué sucede con f(x) cuando  $x \longrightarrow 2^+$ ?

2. ¿Cómo se comporta f(x) cuando  $x \longrightarrow 2^-$ ?


Como habrá observado, cuando 
$$x \longrightarrow 2$$
,  $f(x)$  crece indefinidamente, sin cota superior. Luego, no existe  $\lim_{x \to 2} f(x)$ . Haciendo un abuso de lenguaje y notación, se dice que límite de  $f(x)$ , cuando  $x \to 2$ , es  $+\infty$ . Se anota:

$$\lim_{x\to 2} f(x) = +\infty$$

## 2. Límites en el infinito

- 1. ¿Qué se puede decir de  $\lim_{x\to 0} \frac{1}{x}$ ?
- 2. Lo mismo para  $\lim_{x\to 0} -\frac{1}{|x|}$

CdP



Según lo visto en los ejercicios precedentes es posible que cuando  $x \to x_0$ , f(x) se vaya a  $+\infty$ , o bien a  $-\infty$ , o bien a  $\infty$ . Esto sugiere la idea de estudiar también el comportamiento de y=f(x) cuando  $x\to +\infty$  o  $x\to -\infty$ o  $x \to \infty$ .

### Actividades 3.

1. Verificar, cada uno de los siguientes límites:

a) 
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

$$b) \lim_{x \to -\infty} \frac{1}{x} = 0$$

c) 
$$\lim_{x \to \infty} \frac{1}{x} = 0$$

$$d) \lim_{x \to +\infty} \frac{x+5}{x} = 1$$

e) 
$$\lim_{x \to +\infty} \frac{2x^2 - x + 1}{x^2 + x + 5} = 2$$

$$f) \lim_{x \to +\infty} \frac{\sin x}{x} = 0$$

2. Hacer el gráfico de **una** función y = f(x) que cumple **cada una** de las siguientes condiciones:

a)  $\lim_{x \to 2+} f(x) = 5$ b)  $\lim_{x \to 2-} f(x) = +\infty$ c)  $\lim_{x \to -1} f(x) = 1$ d)  $\lim_{x \to -1} f(x) = 2$ 

a) 
$$\lim_{x \to a} f(x) = 5$$

b) 
$$\lim_{x \to 0} f(x) = +\infty$$

c) 
$$\lim_{x \to 0} f(x) = 1$$

$$d) \lim_{x \to 5} f(x) = 2$$

e) 
$$\lim_{x \to +\infty} f(x) = -\infty$$

a) 
$$\lim_{x\to 2+} f(x) = 5$$
 b)  $\lim_{x\to 2-} f(x) = +\infty$  c)  $\lim_{x\to -1} f(x) = 1$  d)  $\lim_{x\to 5} f(x) = 2$  e)  $\lim_{x\to +\infty} f(x) = -\infty$  f)  $\lim_{x\to -\infty} f(x) = -10$ 

- 3. Verificar el siguiente límite especial  $\lim_{x\to\infty} \left(1+\frac{a}{x}\right)^x = e^a$ .

a) 
$$\lim_{x \to +\infty} \frac{a^x - a^{-x}}{a^x + a^{-x}}$$
,  $a > 0$  b)  $\lim_{x \to -\infty} \frac{a^x - a^{-x}}{a^x + a^{-x}}$ ,  $a > 0$  c)  $\lim_{x \to \infty} \frac{a^x - a^{-x}}{a^x + a^{-x}}$ ,  $a > 0$ 

b) 
$$\lim_{x \to -\infty} \frac{a^x - a^{-x}}{a^x + a^{-x}}, a > 0$$

c) 
$$\lim_{x \to \infty} \frac{a^x - a^{-x}}{a^x + a^{-x}}, a > 0$$

d) 
$$\lim_{x \to +\infty} \left( \frac{x^3}{x^2 + 1} - x \right)$$

$$\mathrm{d)}\, \lim_{x \to +\infty} \left( \frac{x^3}{x^2+1} - x \right) \qquad \qquad \mathrm{e)}\, \lim_{x \to -\infty} \left( \frac{x^3}{2x^2-1} - \frac{x^2}{2x+1} \right) \qquad \qquad \mathrm{f)}\, \lim_{x \to \infty} \frac{\sqrt{x+1}-1}{x^2}$$

f) 
$$\lim_{x \to \infty} \frac{\sqrt{x+1} - 1}{x^2}$$

g) 
$$\lim_{x \to +\infty} (\sqrt{x+a} - \sqrt{x})$$
 h)  $\lim_{x \to -\infty} (\sqrt{x^2 + x} - x)$ 

h) 
$$\lim_{x \to -\infty} (\sqrt{x^2 + x} - x)$$

i) 
$$\lim_{x \to \infty} (\sqrt{x^2 + x} - x)$$

- 5. Calcular el límite  $\lim_{x\to +\infty} \frac{(ax+1)^n}{x^n+A}$ , para cada uno de los siguientes casos: a) n entero positivo. b) n entero negativo. c) n=0.

#### 4. Desafío

Calcular

$$\lim_{x \to \infty} \left( \frac{x+1}{x-1} \right)^x$$