1. Tema: Derivadas de orden superior.

a) Si
$$y = e^x \sin x$$
, verificar que $y'' - 2y' + 2y = 0$.

b) Si
$$y = \frac{1}{1+x}$$
, encontrar una formula general para $\frac{d^n y}{dx^n}$.

Nota:

•
$$y'' = (y')'$$
, es la derivada de la derivada, llamada segunda derivada de y . También se anota $\frac{d^2y}{dx^2}$
• $y''' = y^{(3)} = (y'')'$, es la tercera derivada de y . También se anota $\frac{d^3y}{dx^3}$
• ETC.

•
$$y''' = y^{(3)} = (y'')'$$
, es la tercera derivada de y . También se anota $\frac{d^3y}{dx^3}$

2. Tema: Extremos absolutos de funciones continuas definidas en un intervalo cerrado.

Determinar los extremos absolutos de las siguientes funciones en el intervalo indicado.

(a)
$$y = 4xe^{-2x}$$
, [0,2] b) $y = \frac{\ln^2 x}{x}$, [1,3]

3. Tema: Intervalos de crecimiento y decrecimiento de una función.

Determinar los intervalos de crecimiento y decrecimiento de:

a)
$$y = \frac{x^3}{(1+x)^2}$$
 b) $y = x^3 e^x$

4. Tema: Extremos relativos usando el método de la primera derivada.

Usando el método de la primera derivada, estudiar los extremos relativos de la funciones de la actividad (3).

5. Tema: Resolución de problemas sobre extremos.

Usando las técnicas del cálculo diferencial:

- a) Encontrar dos números positivos cuyo producto es A (A > 0) y cuya suma sea mínima.
- b) Encontrar la ecuación de la recta que pasa por el punto (3,5) y forma con los ejes coordenados, en el primer cuadrante, el triángulo de menor área.
- c) Demostrar que de todos los rectángulos que tienen un área dada, el que tiene menor perímetro es el cuadrado.
- d) Determinar la base y la altura del triángulo isósceles de mayor área que se puede inscribir en una circunferencia de radio r.

6. Aplicaciones al área de la salud

a) Un equipo de investigación médica determina que t días después del inicio de una epidemia

$$N = N(t) = 10t^3 + 5t + \sqrt{t}$$

J de Talca

personas estarán infectadas. ¿A qué razón se incrementa la población on infectada en el noveno día?.

- (R) Pasados 9 días la población on de bacterias está aumentando a razón de 2435 personas por día, aproximadamente.
- b) Un investigador médico estima que t horas después de introducirse una toxina, la población (en miles) de cierta colonia de bacterias será

$$P = P(t) = \frac{600}{4 + e^{-0.01t} + e^{0.003t}}$$

¿Cuándo es máxima la población? ¿Cuál es la máxima población de la colonia?

Existen varios modelos matemáticos en el estudio de enfermedades dinámicas como la leucemia y otras enfermedades que afectan a las células sanguíneas. Uno de estos modelos de producción de células sanguíneas fue desarrollado por A. Lasota en 1977 e involucra la función exponencial

$$p = p(x) = Ax^s e^{-sx/r}$$

donde A, s y r son constantes positivas y x es el número de glanulocitos (un tipo de glóbulos blancos) presentes. Hallar el nivel x de glanulocitos de la sangre que maximizan la función de producción.

d) Un modelo para la producción de células sanguíneas es la función

$$p = p(x) = \frac{Ax}{B + x^m}$$

donde x es el número de células presentes, A, B y m son constantes positivas.

- 1) Hallar la tasa de producción de sangre R(x) = p'(x) y determinar los valores de x tales que R(x) = 0. ¿Qué indican estos valores?
- 2) Hallar la razón a la cuál cambia R(x) respecto a x. Interpretar.
- e) La reacción del cuerpo a las drogas se puede modelar por la función

$$R = R(D) = D^2 \left(\frac{k}{2} - \frac{D}{3}\right),$$

donde D es la dosis y k es una constante que indica la dosis máxima que puede administrarse. La razón de cambio de R con respecto a D se denomina sensibilidad. Hallar el valor de D para que la sensibilidad sea máxima.