Última actualización: 14 de noviembre de 2022

Prof.: Claudio del Pino O.

La simetría es una idea por medio de la cual, el hombre de todas las épocas ha tratado de comprender y crear la belleza, el orden y la perfección.

Hermann Weyl

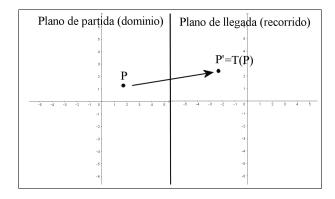
Taj Mahal

Isometrías en el plano

- 1) Transformaciones geométricas del plano
- 2) Isometrías en el plano
- 3) Traslación (según un vector)
- 4) Rotación (de centro O y ángulo α)
- 5) Simetría central (puntual)
- 6) Reflexión (o simetría axial, o simetría ortogonal)
- 7) Figuras invariantes de orden n
- 8) Figuras con eje de simetría
- 9) Ejemplos contextualizados de simetrías

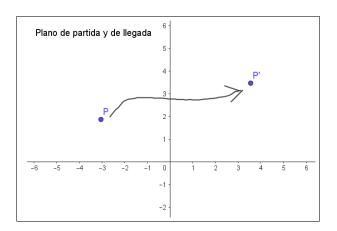
Para iniciar este tema, trabajar las siguientes Autoevaluación 1 y Autoevaluación 2.

1) Transformaciones geométricas del plano



Una transformación geométrica T del plano de partida (dominio) en otro plano de llegada (recorrido) es una función biyectiva, de modo que a cada punto P le hace corresponder un único punto T(P) = P'.

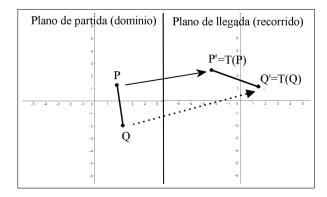
Nota: Por razones de comodidad y mayor claridad se trabajan estas transformaciones como aplicaciones de un plano en si mismo.



- P' = T(P) es la imagen de P por la transformación T.
- P' y P se dicen puntos homólogos respecto de T.
- Sea F una figura (conjunto de puntos). T(F) es el conjunto de todos los puntos T(P) tales que P es punto de la figura F.

Nota. En este curso interesan las siguientes transformaciones geométricas especiales: traslaciones, reflexiones, rotaciones, la simetría respecto de un punto. Ellas pertenecen a una clase especial de transformaciones geométricas del plano, llamadas Isometrías o Movimientos rígidos del plano.

2) Isometrías 1 en el plano



Una isometría T en el plano es una transformación geométrica que preserva longitudes, es decir, para todo P,Q en el dominio de T:

$$distancia(P,Q) = distancia(T(P),T(Q))$$

Observaciones sobre las isometrías:

- a) Toda isometría es una función inyectiva.
- b) La compuesta de dos isometrías es también una isometría.
- c) La imagen de un segmento (recta, circunferencia) a través de una isometría es también un segmento (recta, circunferencia).
- d) Las isometrías, como mantienen las distancias entre los puntos de una figura, entonces también conservan sus ángulos.
- e) Las isometrías solo cambian la posición (u orientación) de una figura determinada, pero **no** alteran la forma ni el tamaño de ésta. Por lo tanto, para toda figura F, F y T(F) son congruentes. Así entonces se tiene la siguiente definición:

Definición:

Dos figuras F y G del plano son *congruentes* siempre y cuando exista una isometría T, tal que

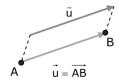
$$T(F) = G$$

¹Iso=igual, metria=medida

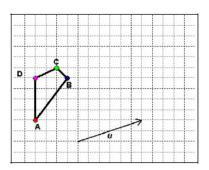
En el plano solo existen las siguientes isometrías (básicas):

3) Traslación (según un vector)

Una traslación de vector \overrightarrow{u} , anotada $T_{\overrightarrow{u}}$, es un movimiento que transforma cada punto A del plano, en otro punto B de manera que el vector \overrightarrow{AB} es igual al vector \overrightarrow{u}



Actividad: Construir, sin GeoGebra y con GeoGebra, la imagen del cuadrilátero, por la traslación de vector \overrightarrow{u} .

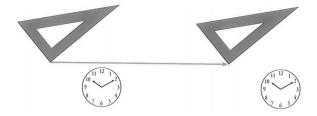


Actividad: Comprobar que toda traslación es una isometría.

Nota:

- El conjunto de todas las traslaciones tiene estructura de grupo conmutativo, es decir, satisfacen:
 - * Clausura: La compuesta de 2 traslaciones es una traslación. En efecto: $T_{\overrightarrow{\eta}} \circ T_{\overrightarrow{\eta}} = T_{\overrightarrow{\eta}+\overrightarrow{\eta}}$
 - * Asociativad. Se hereda de las propiedades generales de la funciones
 - * Elemento neutro: La transformación idéntica es $T_{\overrightarrow{0}}$
 - * Elemento inverso: $-T_{\overrightarrow{u}} = T_{-\overrightarrow{u}}$
 - * Conmutatividad: $T_{\overrightarrow{u}} \circ T_{\overrightarrow{v}} = T_{\overrightarrow{v}} \circ T_{\overrightarrow{u}}$
- Las traslaciones (no nulas) no tiene puntos fijos

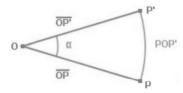
• Una traslación es un movimiento directo, es decir, que conserva la orientación de las figuras.



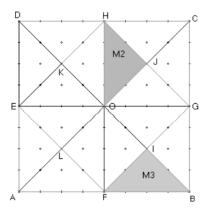
4) Rotación (de centro O y ángulo α)

Una rotación, de centro un punto O y ángulo α , anotada $R(O, \alpha)$, transforma cada punto P del plano en otro punto P' de modo que:

- $\blacksquare \angle POP' = \alpha, \mathbf{v}$
- $d(\overline{OP}) = d(\overline{OP'})$

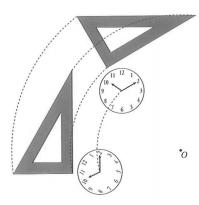


Actividad: Sean M2 y M3 los triángulos OHJ y FBI respectivamente. Encontrar, usando GeoGebra, una rotación que transforma M2 en M3.



Nota:

- El conjunto de todas las rotaciones *con el mismo centro*, tiene estructura de grupo conmutativo
- La rotación $R(O, \alpha)$ tiene un punto fijo: el centro de rotación O.
- Una rotación es un movimiento directo, es decir que conserva la orientación de las figuras.



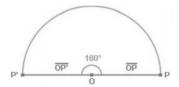
Actividad: Comprobar que toda rotación es una isometría.

5) Simetría central (puntual)

La simetría central de centro O, anotada S_O , transforma cada punto P en un punto P' de modo que:

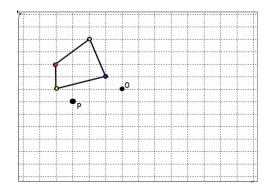
- a) Los puntos O, P y P' están alineados
- b) O es el punto medio del segmento PP', es decir, el punto O equidista de P y P'.

Nota: Observar que simetría respecto a un punto O, es una rotación de centro O y ángulo de 180° .



Actividad: Construir, sin Geogebra y con Geogebra, la imagen del cuadrilátero, por la simetría:

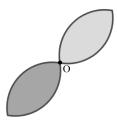
- a) con respecto a O
- b) con respecto a P



Nota:

- \blacksquare Una simetría central S es involutiva, es decir, $S\circ S=id,$ es decir, $S^{-1}=S$
- Toda S_O dejan invariantes las rectas que pasan por su centro O y toda circunferencia que tiene su centro en O.

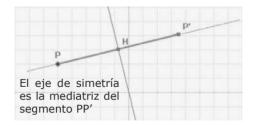
- Como una simetría central es en particular una rotación, una simetría es un movimiento directo, es decir que conserva la orientación de las figuras.
- Centro de simetría
 Si al aplicar a una figura una simetría de centro O la figura no varía,
 O se dice que es su centro de simetría. Por ejemplo:



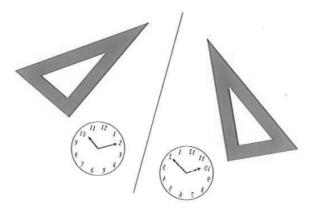
6) Reflexión (o simetría axial, o simetría ortogonal)

Una reflexión respecto a una recta L, anotada R_L , (llamada eje de la reflexión) es un movimiento que transforma cada punto P del plano en otro P' de modo que la recta L es mediatriz del segmento de extremos P y P'. Luego:

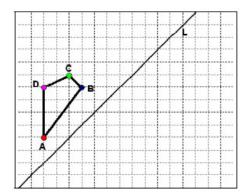
- La recta L debe ser perpendicular al segmento $\overline{PP'}$
- \blacksquare La distancia de P a la recta L será igual que la distancia de P' a dicha recta



- a) Una reflexión puede ser considerada como el movimiento que aplicado a una figura geométrica, produce el efecto de un espejo
- b) Una reflexión R_L es *involutiva*, es decir, $R_L \circ R_L = id$, es decir, $(R_L)^{-1} = R_L$
- c) Las reflexiones dejan invariante todo su eje de reflexión y las circunferencias que tienen su centro en su eje de reflexión
- d) Una simetría axial es un movimiento inverso, es decir que *invierte* la orientación de las figuras.



Actividad: Construir, sin y con GeoGebra, la imagen del cuadrilátero, por la reflexión con eje la recta L.



Actividad: Comprobar que toda reflexión es una isometría.

7) Figuras invariantes de orden n

Si al rotar una figura con centro en un punto O y según un ángulo menor que 360° , coincide con si misma, el punto O se dice que es centro de giro de la figura.

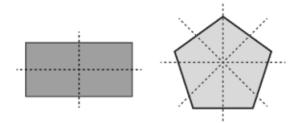
Si al aplicar a una figura un giro de 360° alrededor de su centro de giro se producen n coincidencias, dicho centro se dice de orden n y la figura invariante de orden n.

Asi, por ejemplo, un cuadrado es una figura invariante de orden 4, un triángulo equilátero es invariante de orden 3, y una circunferencia tiene orden de giro igual a n, para todo $n \in \mathbb{N}$.

8) Figuras con eje de simetría

Hay figuras que son invariantes (no cambian) al aplicarles una reflexión. En ese caso, el eje de la misma se llama *eje de simetría* de la figura. Es claro que una figura puede tener varios ejes de simetría.

A continuación se muestran figuras con 2 y 5 ejes de simetría, respectivamente.



9) Ejemplos contextualizados de simetrías

a) Simetría en la naturaleza

b) Simetría en la música

c) Simetría en la construcción

- d) Simetría en el lenguaje
 - dabale arroz a la zorra el abad ...reflexión... daba le arroz al a zorra elaba
 - | yo dono rosas, oro no doy | ...reflexión... | yod on oro, sasor onod oy
 - OZONO ...rotación con eje horizontal en la mitad de la palabra.

girado en 180°

Referencias:

- 1) Geometría. X. Carreño & X. Cruz
- 2) Geometría euclidiana. Rodolfo Londoño
- 3) Isometrías. Patricia Pérez Ortíz Movimientos en el plano
- 4) Isometrías y semejanzas en el plano. José H. Nieto
- 5) Flipscript. Sitio generador de Ambigramas