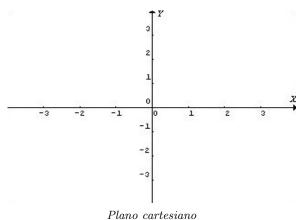


1. El plano cartesiano

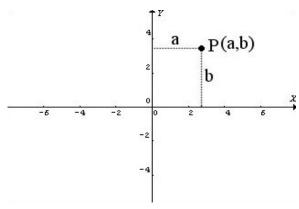
Para representar puntos en un plano, definidos por un par ordenado de números reales, se utiliza generalmente el sistema de coordenadas rectangulares, que se caracteriza por:

- Estar formado por dos rectas reales dirigidas, mutuamente perpendiculares, llamadas ejes coordenados: eje X (eje de las abscisas), normalmente horizontal y eje Y (eje de las ordenadas), normalmente vertical.
- El punto de intersección de los dos ejes es el *origen* del sistema, y se denota por O.
- El eje X está orientado (crece) de izquierda a derecha y el eje Y de abajo hacia arriba.
- El número 0 de ambos ejes se ubica en el origen del sistema.



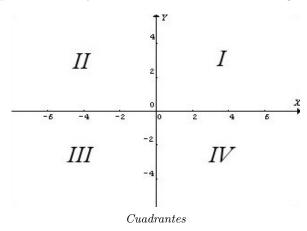
La posición de un punto P en el plano cartesiano queda determinado por un par de números reales (a,b), donde

- lacktriangle Los números a y b reciben el nombre de coordenadas del punto P.
- La primera coordenada, a, recibe el nombre de abscisa de P. La segunda coordenada, b, recibe el nombre de ordenada de P.
- lacktriangle La abscisa de P corresponde a la distancia dirigida de P al eje Y. La ordenada de P corresponde a la distancia dirigida de P al eje X.

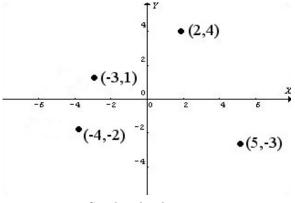


Posición de un punto

Es claro que los ejes coordenados dividen al plano en 4 sectores. Estos sectores reciben el nombre de cuadrantes. Los cuadrantes se designan por I, II, III y IV, tal como se muestra en la siguiente figura:

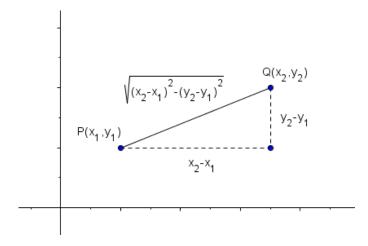


En la siguiente figura se muestran las posiciones de 4 puntos con sus respectivas coordenadas:



Coordenadas de puntos

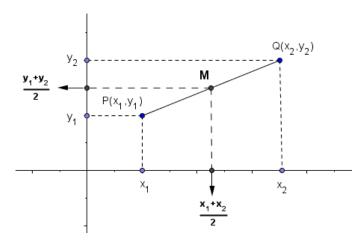
2. Distancia entre dos puntos del plano



La distancia entre dos puntos del plano $P = (x_1, y_1)$ y $Q = (x_2, y_2)$, que se denota por d(P, Q), viene dada por la fórmula:

$$d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

3. Punto medio de un segmento



El punto medio de un segmento cuyos puntos extremos son $P = (x_1, y_1)$ y $Q = (x_2, y_2)$, que se denota por M(P, Q), viene dada por la fórmula:

$$M(P,Q) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

4. Gráfica de ecuaciones

Una ecuación es una relación entre las variables x e y. Ejemplos de ecuaciones son:

$$x = 1,$$
 $x + 2y = 6,$ $x^{2} + (y - 3)^{2} = 4,$ $y^{2} = x^{2},$ $y = 2x^{2} - 3x + 6$

Graficar una ecuación es representar en un plano cartesiano el conjunto de todos los puntos (x, y) que la satisfacen. Para ello, en general, se procede de la siguiente manera:

Paso 1 Construir una tabla de valores, del tipo:

para algunos valores de x y sus correspondientes valores de y.

Paso 2 Graficar en un sistema de coordenadas los puntos obtenidos en la tabla de valores precedente.

Paso 3 Unir con una curva suave los puntos recién graficados.

Observación: En caso de tener alguna duda al trazar la curva (en el paso 3) se debe *refinar* la tabla de valores, agregando nuevos puntos de la curva.

5. Ayudas para graficar ecuaciones

Algunas veces es de utilidad, en la obtención del gráfico de una ecuación, realizar los siguientes estudios.

5.1. Intersecciones con los ejes coordenados

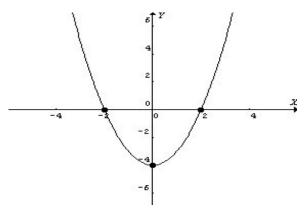
Intersecciones con el eje X

Para determinar el (o los) punto(s), en caso que exista(n), donde el gráfico de una ecuación intersecta al eje X, se sustituye en la ecuación y por 0 y se despeja la variable x.

Intersecciones con el eje Y

Para determinar el (o los) punto(s), en caso que exista(n), donde el gráfico de una ecuación intersecta al eje Y, se sustituye en la ecuación x por 0 y se despeja la variable y.

Así por ejemplo, la ecuación $y = x^2 - 4$ intersecta al eje X en los puntos (-2,0) y (2,0), y al eje y en el punto (0,-4). Esta situación se muestra en el siguiente gráfico:



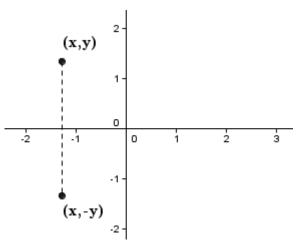
Intersecciones con los ejes coordenados de la ecuación $y = x^2 - 4$

5.2. Simetría respecto al eje X

El gráfico de una ecuación es simétrica respecto al eje X, cuando al cambiar en la ecuación la variable y por -y, la ecuación no cambia. Es decir,

$$(x,y) \in \text{gráfico} \implies (x,-y) \in \text{gráfico}$$

Nota: Geométricamente, el gráfico de una ecuación es simétrico respecto al eje X, cuando al girar el gráfico en torno al eje X, su parte superior e inferior coinciden.

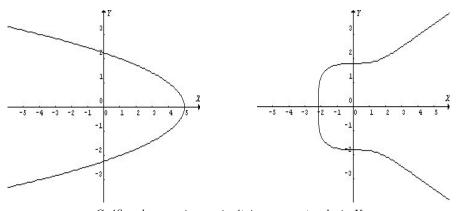


 $Puntos\ sim\'etricos\ respecto\ eje\ X$

Ejemplos de ecuaciones cuyas gráficas son simétricas respecto al ejeX son:

$$x + y^2 = 5$$
, $-x^3 + y^4 = 10$, $xy^2 + x^2y^6 = 10$

Así, por ejemplo, los gráficos de las dos primeras ecuaciones son:



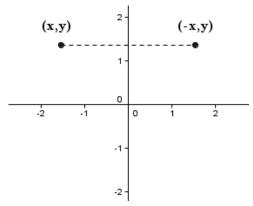
Gr'afico de ecuaciones simétricas respecto al eje X

5.3. Simetría respecto al eje Y

El gráfico de una ecuación es simétrica respecto al eje Y, cuando al cambiar en la ecuación la variable x por -x, la ecuación no cambia. Es decir,

$$(x,y) \in \text{gráfico} \implies (-x,y) \in \text{gráfico}$$

Nota: Geométricamente, el gráfico de una ecuación es simétrico respecto al eje Y, cuando al girar el gráfico en torno al eje Y, su parte derecha e izquierda coinciden.

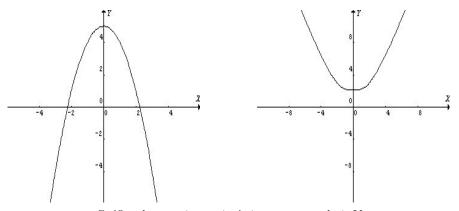


Puntos simétricos respecto eje Y

Ejemplos de ecuaciones cuyas gráficas son simétricas respecto al ejeY son:

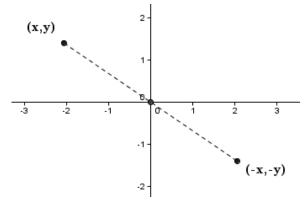
$$x^{2} + y = 5$$
, $-x^{4} + y^{3} = 10$, $x^{2}y + x^{4}y^{2} = 10$

Así, por ejemplo, los gráficos de las dos primeras ecuaciones son:



 $Gr\'afico\ de\ ecuaciones\ sim\'etricas\ respecto\ al\ eje\ Y$

5.4. Simetría respecto al origen



Puntos simétricos respecto al origen

El gráfico de una ecuación es simétrica respecto al origen, cuando al cambiar simultáneamente en la ecuación la variable x por -x y la variable y por -y, la ecuación no cambia. Es decir:

$$(x,y) \in \text{gráfico} \implies (-x,-y) \in \text{gráfico}$$

Ejemplos de ecuaciones cuyas gráficas son simétricas respecto al origen son:

$$x^2 + 2y^2 = 5$$
, $xy = 10$, $x^2y^2 + x^4y^2 = 10$

Así, por ejemplo, los gráficos de las dos primeras ecuaciones son:

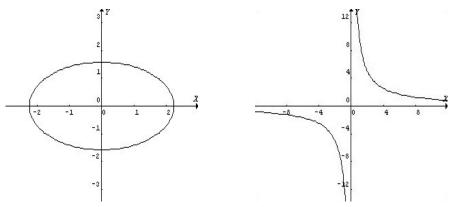


Gráfico de ecuaciones simétricas respecto al origen

6. Actividades

1. Identificar y graficar todos los puntos del plano cartesiano que cumplen cada una de las siguientes condiciones:

a)
$$x = 3$$
 b) $x^2 = 1$ c) $(x + 2)(y - 3) = 0$ d) $x < 2$

Sol.: a) Recta paralela al eje Y, que se encuentra a 3 unidades, a la derecha del eje Y. c) son los puntos que están a -2 unidades del eje Y (recta vertical que pasa por el punto (-2,0)) o 3 unidades del eje X (recta horizontal que pasa por el punto (0,3)).

- 2. Uno de los extremos de un segmento rectilíneo de longitud 5 es el punto A=(3,-2). Si la abscisa del otro extremo B es 6, determinar su ordenada. Sol.: y=-6 o y=2
- 3. Determinar los puntos que dividen en cuatro partes iguales al segmento con extremos A=(1,8) y B=(-5,40). Sol.: $(-\frac{1}{2},16)$, (-2,24) y $(-\frac{7}{2},32)$.
- 4. Determinar los vértices de un triángulo sabiendo que los puntos medios de sus lados son (2,4), (6,6) y (-4,-2). Sol.: (-8,-4), (0,0) y (12,12).
- 5. Encontrar un punto del eje Y que equidiste de los puntos A = (5, -5) y B = (1, 1). Sol.: (0, -4).
- 6. Decidir si el triángulo cuyos vértices son los puntos $A=(0,0),\ B=(2,4)$ y C=(4,3) es o no un triángulo rectángulo. Sol.: Si.
- 7. Un triángulo equilátero OAB, cuyo lado tiene una longitud a, está colocado de tal manera que el vértice O está en el origen, el vértice A está sobre el eje X y a la derecha de O, y el vértice B está arriba del eje X. Hallar las coordenadas de los vértices A y B y el área del triángulo. Sol: A = (a, 0), $B = (\frac{a}{2}, \frac{a\sqrt{3}}{2})$, área $= \frac{\sqrt{3}}{4}a^2$.
- 8. Los vértices de un triángulo son A(-1,3), B(3,5) y C(7,-1). Si D es el punto medio del lado AB y E es el punto medio del lado BC, verificar que la longitud del segmento DE es la mitad de la longitud del lado AC.

- 9. Estudiar intersecciones con los ejes coordenados y simetrías de la curva de ecuación $3x^3y^2+x^2+x+32y^4=$ 2. Sol.: a) Eje X: (1,0), (-2,0). Eje Y: $(0,\frac{1}{2})$ y $(0,-\frac{1}{2})$. b) Hay simetría eje X. No hay simetría eje Yni respecto al origen.
- 10. Dada la ecuación $y^2 = \frac{x^2(2-x)}{2+x}$, cuyo gráfico recibe el nombre de estrofoide recto, se pide:
 - a) Intersecciones con los ejes coordenados.
 - b) Rango de variación de la variable x.
 - c) Estudiar simetrías (eje X, eje Y, origen de coordenadas)
 - d) Completar la siguiente tabla de valores

x	-1,5	-1	-0.5	0	0.5	1	1.5	2
y								

e) En base a la información anterior, obtener un esbozo del gráfico de esta curva.

Sol.: Eje X: (0,0), (2,0), Eje Y: (0,0) b) $-2 \le x \le 2$ c) Solo simetría eje X

- 11. Considerar los puntos A = (1,5) y B = (7,3).
 - a) Encontrar un punto del plano que equidiste (esté a igual distancia) de los puntos A y B.
 - b) Determinar la ecuación que satisfacen todos puntos que equidistan de A y B.
 - c) Graficar la ecuación obtenida en (b).

Sol.: a) (4,4) (punto medio del segmento AB) b) 3x - y = 8.

- 12. Buscar una ecuación que cumpla cada una de las siguientes condiciones:
 - a) La gráfica tiene intersección con el eje X en x = -1, x = 2 y x = 5.
 - b) La gráfica es simétrica respecto al eje X.
 - c) La gráfica es simétrica respecto al origen, pero no es simétrica respecto al eje Y.
- 13. Graficar cada una de la siguientes ecuaciones, estudiando previamente sus intersecciones con los ejes coordenados y sus posibles simetrías.

a)
$$y = x^2 + 3$$

b)
$$y = \sqrt{9 - x^2}$$

e) $x + y^2 = 3$

c)
$$u = x^3$$

d)
$$y = 1 - x^2$$

e)
$$r + u^2 = 3$$

c)
$$y = x^3$$

f) $x^2 - y^2 = 4$

- 14. A continuación se entregan 4 gráficos:
 - a) Por inspección de cada gráfico, determinar si tiene o no simetría con respecto al eje X, Y y origen.
 - b) Si las ecuaciones de los gráficos (¡sin orden!) son:

(A)
$$x^3 + y^3 = 3xy$$

(C) $y^2(1+x) = x^2(3-x)$

(B)
$$y^2(x^2+y^2)=x^2$$

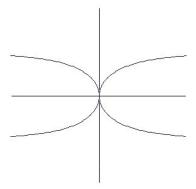
$$(C) u^2(1+r) = r^2(3-r)$$

(B)
$$y^2(x^2 + y^2) = x^2$$

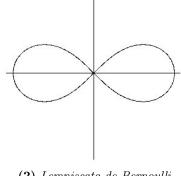
(D) $(x^2 + y^2)^2 = x^2 - y^2$

establecer la correspondencia entre los gráficos de (a) y sus correspondientes ecuaciones.

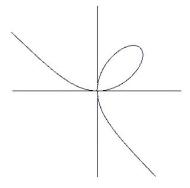
c) Una vez realizada la correspondencia entre los gráficos y sus ecuaciones, corroborar sus respuestas dadas en (a) trabajando con las ecuaciones de las curvas.



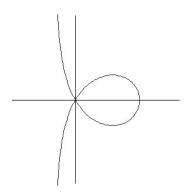
(1) Curva Kappa



(2) Lemniscata de Bernoulli



(3) Hoja de Descartes



(4) Trisectriz de Maclaurin