
Computing areas using Green’sTheorem
and a Software Planimeter
Paul Davis and S� erban Raianu

Submitted July, 2006; accepted September, 2006

Abstract
According to the Merriam-Webster dictionary, a planimeter is ‘an instrument for
measuring the area of a plane ¢gure by tracing its boundary line’. Even without
knowing how a planimeter works, it is clear from the de¢nition that the idea behind
it is that one can compute the area of a ¢gure just by ‘walking’ on the boundary.
For someone who has taken calculus, this immediately suggests Green’s Theorem.
The aim of this note is to clarify for others why this principle works. We do this
by using points of view from linear algebra to elementary plane geometry in
order to obtain an intuitive justi¢cation for Green’s Theorem. As an application,
we show how the reader can easily construct a ‘software planimeter’. The idea
behind this is certainly not original; the formula for the area of a polygon used in
this process (see Theorem 1.2 and Remark 1.5 (3)) is surely folklore for experienced
programmers (1). What we would like to emphasize is, on the one hand, the beauti-
ful interplay between various branches of mathematics and elementary computer
graphics in this case. On the other hand, since our application is (in our view) partic-
ularly fun to work with, we hope that this approach can be successfully used in class
as an aid in teaching Green’s Theorem, or in a calculus lab, or even to show younger
and more inexperienced students that sometimes deep mathematical results can be
surprisingly accessible and entertaining.

1. Computing areas with Green’sTheorem
The starting point of our journey is the following result (2, p. 146):

Theorem 1.1

Let (x1, y1), (x2, y2) and (x3, y3) be the vertices of a triangle, oriented clockwise. Then the area

of the triangle is given by the formula

Area ¼ �
1

2

x1 y1 1

x2 y2 1

x3 y3 1

�������

�������

TEACHING MATHEMATICS AND ITS APPLICATIONS, Volume 26, No. 2, 2007 103
Advance Access Published on 7 January 2007 doi:10.1093/teamat/hrl017

� The Author 2007. Published by Oxford University Press on behalf of The Institute of Mathematics and its Applications.
All rights reserved. For permissions, please email: journals.permissions@oxfordjournals.org

Proof: We are going to work on the following drawing (note that the case when the projection of

(x3, y3) on the x-axis lies between the ones of (x1, y1) and (x2, y2) can be treated similarly):

Denote by T1 the trapezoid with vertices (x1, y1), (x2, y2), ðx2, 0Þ and ðx1, 0Þ, by T2 the

trapezoid with vertices (x2, y2), (x3, y3), ðx3, 0Þ and ðx2, 0Þ, and by T3 the trapezoid with vertices
(x1, y1), (x3, y3), ðx3, 0Þ and ðx1, 0Þ. It is then clear that the area of the triangle is the area of

T1 plus the area of T2 minus the area of T3. This can be written as

Area ¼
1

2
ðy1 þ y2Þ ðx2 � x1Þ þ

1

2
ðy2 þ y3Þ ðx3 � x2Þ þ

1

2
ðy3 þ y1Þ ðx1 � x3Þ

¼ �
1

2
ðx2y3 � x3y2 � x1y3 þ x3y1 þ x1y2 � x2y1Þ ¼ �

1

2

x1 y1 1

x2 y2 1

x3 y3 1

�������

�������
:

j

It is easy to see that this way of computing areas extends from triangles to arbitrary polygons.

We do this in the next result.

Theorem 1.2

Let ðx1, y1Þ, ðx2, y2Þ, . . . , ðxn, ynÞ ¼ ðx1, y1Þ be the vertices of a polygon, oriented clockwise.
Then the area of the polygon is given by the formula

Area ¼
1

2

Xn�1

i¼1

ðyi þ yiþ 1Þ ðxiþ 1 � xiÞ:

Proof: We have that 1
2 ðyi þ yiþ 1Þðxiþ 1 � xiÞ is the area of the trapezoid with vertices (xi, yi),

ðxiþ 1, yiþ 1Þ, ðxiþ 1, 0Þ and ðxi, 0Þ, if xi5xiþ 1, and the negative of that area otherwise. Therefore,

when computing the sum in the statement, the areas of the portions outside the polygon will

cancel out. j

Remark 1.3

The sign of the coordinates of the vertices is irrelevant. Nevertheless, in order to justify the use

of the drawing from the proof of Theorem 1.1, one can always translate the polygon into the first

quadrant.

TEACHING MATHEMATICS AND ITS APPLICATIONS, Volume 26, No. 2, 2007104

We are now ready to apply Green’s Theorem to computing areas (3, p. 1102). Let us point

out that we are not going to give a rigorous proof for this result. Instead, we are going to use

the idea from Theorem 1.2 (with rectangles replacing trapezoids) in order to make the result

believable.

Theorem 1.4

Let � be a clockwise-oriented, piecewise-smooth, simple closed curve in the plane, and let D be

the region bounded by �. Then

AreaðDÞ ¼

ð
�

y dx:

Proof: Let us first give a heuristic definition of the line integral
Ð
� (vaguely, in the old-fashioned

style of the XIXth century, but without mentioning infinitesimals) as follows: let the point of

coordinates (x, y) go along the boundary � clockwise. For each position, consider a small interval

of length dx and compute the area of the thin rectangle of height y and width dx. The right-hand

side of the formula in the statement is the sum of all these areas. The fact that this sum is in fact

the area of D follows exactly as in the proof of Theorem 1.2: the areas of the portions outside D

will cancel out. j

Remarks 1.5

(1) What happens if we use trapezoids instead of rectangles? Approximating � by a polygon,

considering the formula from Theorem 1.2, and letting the x’s be very close, we set dx ¼ xiþ 1 � xi
and we get that the area of D is

1

2

X
ðyi þ yiþ 1Þðxiþ 1 � xiÞ ¼

1

2
ð
X

yiðxiþ 1 � xiÞ þ
X

yiþ 1ðxiþ 1 � xiÞÞ

¼
1

2
ð

ð
�

y dx þ

ð
�

y dxÞ,

which is exactly Theorem 1.4.
(2) The formula in Theorem 1.2 is a variation on the well known ‘Surveyor’s Formula’

(see (3, Problem 21 b, p. 1125), or (4, Problem 1, p. 85)):

AreaðDÞ ¼
1

2

Xn�1

i¼1

xi yi

xiþ 1 yiþ 1

����
����:

To see this is the same formula, just add and subtract
Pn

i¼1 xiyi and regroup terms.
(3) It is perhaps a surprising fact that students do not have to wait until they meet Green’s

Theorem to see this machinery in action. As early as (3, 11.2), when they study calculus with

parametric curves, they could use the same idea to compute the area under a simple curve,

given parametrically, starting on the line x¼ a, ending on the line x¼ b and contained in the region

a � x � b, without having to check that the curve is the graph of some function. The fact

that the areas of the appropriate regions cancel out enables the students to integrate from 0 to

2� rather than from 0 to � when they compute the area of the ellipse in (3, Problem 31, p. 783),

for example.

TEACHING MATHEMATICS AND ITS APPLICATIONS, Volume 26, No. 2, 2007 105

2. A software planimeter
It should be clear now how to write a program for computing areas of polygons. The only things
needed to be used as input are the coordinates of the vertices of the polygon, with the last point
equal to the first one. Then we use the formula from Theorem 1.2. The interested reader may
download a sample of such a program from the site http://www.csudh.edu/math/sraianu

by clicking on the ‘Download the planimeter’ link. The program is written in JAVA, works
in any environment (Windows, Mac, Linux) and could be used as follows: show the students how
it works (it computes the area of a closed contour after tracing its boundary); ask students
how they think it was done, in particular how hard or how long do they think this is; explain how
it works using the previous section.

Another possiblity is to encourage the students with some programming experience to
write their own version. In this case, the students could be given the following assignment
description.

2.1. Statement of scope

A simple software planimeter program should allow a user to load a scaled image, set the correct
scale, trace regions of the image with the mouse, compute the resulting areas and display the
results.

2.2. Program requirements

The primary objective of our software planimeter is to demonstrate an application of Green’s
Theorem. To keep things simple, we will only derive requirements that are necessary and
sufficient to accomplish our objective and, at the same time, make it entertaining.

The program requirements are as follows:

. The user shall be able to load a JPEG or GIF image.

. The user shall be able to set the scale.

. The user shall be able to use the mouse to trace a closed region of the image.

. The program shall automatically adjust the last data point to ensure closure of the region.

. The program shall apply the formula from Theorem 1.2 to the points collected from the traced
region.

. The program shall display the results of the area computation to the user.

The first three requirements pose the greatest challenge. Depending on the selected program-
ming language, a programmer may need detailed knowledge of the JPEG and GIF file formats
in order to load the images. Moreover, one would also require a detailed understanding of the
mouse’s hardware interface in order to develop a reasonable driver. To overcome such obstacles,
a high level language is ideal (e.g. JAVA).

2.3. User interface design

Designing a robust graphical user interface (GUI) is a tough challenge. For our purposes, we only
need enough capability to meet the requirements put forth in the previous section. In order to
achieve this, an appropriate application programming interface (API) must be selected. An API
is an interface that permits external software applications to programmatically call functionality

TEACHING MATHEMATICS AND ITS APPLICATIONS, Volume 26, No. 2, 2007106

http://www.csudh.edu/math/sraianu

within another software application (e.g. to make windows or use the mouse). This depends on
the language and platform(s) selected and is beyond our scope.

2.4. Program flow

2.4.1. Component descriptions

The design of the simple software planimeter should be derived from the requirements laid out in
section 2. We will assume the desired API has been selected and skip any discussion of GUI
initialization and image loading. Setting the scale and tracing the region(s) also depend on the
API selected. We briefly discuss methods for accomplishing these tasks without reference to
specific details that will depend on the API selected.

2.4.2. Setting the scale

To set the scale, allow the user to double click any two points on the loaded image, then
compute the distance between them. This value will be used later in the algorithm for computing
the area. Prompt the user for the units of the scale. For example, after the distance between the
two points is computed, the user should tell the program that this distance is equal to, say,
300 miles.

2.4.3. Tracing the region

With the left mouse button depressed, the user should trace a region on the loaded image.
The program should capture the coordinates until the left mouse button is released. The user will
most likely be unable to end the tracing exactly on the starting point, thus we must make the
adjustment automatically. Check the first and last points. If they match, then do nothing, otherwise
add the first point to the end of the array of points. With the array of points and the scale we can
now implement the formula from Theorem 1.2 to compute the area. The absolute value is used to
make sure the result is independent of the orietation used when tracing the boundary.

2.4.4. Computing the area

The algorithm which implements Theorem 1.2 is simple. However, there is one important detail
that must not be overlooked. In Theorem 1.2 the indices begin at 1. In many programming
languages, indexing of arrays begins with 0. We must make the appropriate adjustment in the
algorithm to guarantee the correct result. Observe that re-indexing the sigma formula in the
theorem does not do the job.

Example: Consider the storage array of x[4]¼ {1, 2, 3, 4}, where x [0]¼ 1, . . . , x [3]¼ 4 and n¼ 4.
If we want to calculate sum(x [i], 1, n), we cannot just do x[1]þ x [2]þ x [3]þ x [4] because x [4]
is undefined. Re-indexing gives us sum (x [iþ 1], 0, n�1). This is still x [1]þ . . .þ x [4].
We must subtract 1 from the indices when accessing the storage array. That is, x[1�1]¼ x[0]¼ 1,
x [2�1]¼ x [1]¼ 2 , . . . , x [n�1]¼ x [4�1]¼ x [3]¼ 4. Either summation formula now works.

With the above example in mind, we have the following algorithm: Let x [i] and y [i] be our
storage arrays of x and y coordinates with each having length n. Note i ¼ 0, 1, . . . , n�1.
Then applying Theorem 1.2, we have

for(i ¼ 1; i _¼ n�1; iþþ);

total_area þ¼ 0.5*(y [i�1]þ y [i])*(x[i]�x [i�1]);

total_area¼ abs(total_area)*scale2

TEACHING MATHEMATICS AND ITS APPLICATIONS, Volume 26, No. 2, 2007 107

2.5. Restrictions, limitations and constraints

In order to keep the program simple, the program does not take advantage of interpolating
algorithms that could be used to improve accuracy. Moreover, the accuracy will vary depending
on the accuracy of the images, hand-eye coordination and hardware limits (the mouse).

Acknowledgements
We thank Frédéric Brulois and Frank Miles for helpful comments.

References
1. Bontas� , G. Dǎncescu, S. Lustig, A. and Vemuri, M. Private communications.

2. Larson, R. and Edwards, B.H. (2000) Elementary Linear Algebra, 4th edn. Boston, New York: Houghton

Mifflin Company.

3. Matthews, K. (1991) Elementary Linear Algebra (see http://www.numbertheory.org/book/).

4. Stewart, J. (1999) Calculus, 4th edn. Pacific Grove: Brooks/Cole Publishing Company.

S� erban Raianu is a Professor of Mathematics at California State University Dominguez Hills. He is an

algebraist mainly interested in studying Hopf algebras acting on algebras and coalgebras and in

involving undergraduate students in research projects.

Paul Davis is a Software Engineer at Northrop Grumman Mission Systems. He is mainly interested in

General Topology, Geospatial Information Systems and Digital Image Processing. The present paper

was written when he was an undergraduate student at California State University Dominguez Hills.

Address for correspondence: S� erban Raianu, California State University Dominguez Hills,

Department of Mathematics, 1000 E Victoria St, Carson, CA 90747. Tel. No: 310-243-3139;

Fax No: 310-516-3987. E-mail: sraianu@csudh.edu

Paul Davis, E-mail: pdavis2@gmu.edu

TEACHING MATHEMATICS AND ITS APPLICATIONS, Volume 26, No. 2, 2007108

http://www.numbertheory.org/book/

