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1. Introduction

Visual intuition in mathematics has served us both well and badbughests
theorems that lead to great leaps of insightesearch, yet it also can lead up
blind alleys of error that deceive. For two thousand years Eucligieametry

was held as the archetypal theory of logical deduction until it was found in the
nineteenth century that implicit visual clues had insinuated themselves without
logical foundation: such as the implicit idea that the diagonals rbioabus

meet inside the figure, when theconcept of “insideness” imot formally
defined in the theorySubtleties such as these caused awere pain in the
calculus. So many fondly held implicit beliefs foundered whealysis was
formalized: comfortable feelings about continuous functions and the ubiquity
of differentiable functions took a sharp jolt with the realization tmatst
continuous functions are not differentialaeywhere Once the real numbers
had been axiomatized through the introduction ofcthrapleteness axiom, all
intuition seemed to go out of the window. It is necessary to be so careful with
the statement of theorems in formal analysis that any slight lack of precision is
almost bound to lead to falsehood. In such an atmosphereaof and
suspicion, visual mathematics has been relegatednhinar role — only that
which can be proved by formal means being treatedasnathematics.

Yet to deny visualization is to deny the roots of many of our mexound
mathematical ideas. In the earftages of development of thdeory of
functions, limits, continuity &c, visualization proved to be a fundamental
source of ideas. To deny these ideas to students is to cutotifiehom the
historical roots of the subject.

In this article is summarized research into visualization incgheulusover
the last one and a half decades. It considers the strengthseakdesses of
visual imagery and relates this to the notions of intuition ragalr. It shows
that visual ideas often considered intuitive by an experienced mathematician
are not necessarily intuitive to an inexperienced student, yet appaneoitsy
complicated ideas can lead pmwerful intuitions for the rigours ofater
mathematicalproof. The theory ofcalculus is reconceptualized using the
notion of “local straightness” — that a differentiable function is precisely one
which “looks straight” when a tiny part of the graph is magnified. This gives a
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visual conception of the notion of a differential, which gives intuitive meaning
to solutions of differential equations.

Research into mathematics educatsimows that studentgenerally have
very weak visualization skills in the calculus, whichturn leads to lack of
meaning in the formalities of mathematical analysis. This pdmeed on a
number of earlier papers (Tall 1982-1989)ggests a way to use visudeéas
to improve the situation.

2.1 The value of visualization

In mathematical research proof is but the ksistge of the proces&efore
there can be proof, there must be an idea of what theoremsgteproving,

or what theorems might be true. This exploratetage of mathematical
thinking benefits from building up an overall picture of relationships saruth

a picture can benefit from a visualization. It is no accident that when we think
we understand something we say “obed”.

A good example is the famous Cauchy theorem in comaletysis that
states that thentegral of an analytic function round @osed curvewhich
encloses n@ingularities is zero. Whe@Gauchy stated an early version tbis
theorem, he thought of a complex numbkek+iy analytically in terms of its
real and imaginary parts. By analogy with the real case, he defined the

contour integral:
V4]
f f(2) dz
Z1

between two pointg andz along a curvevhose real and imaginary parts are
both either monotonic increasing or decreasing. As a formal generalization of
the real case, this restriction on the type of curve is natural. But ibpee

our eyes and looks at a@icture, weseethat such graphgfor x andy
increasing) are a restricted set of curves lying in a rectangle opplosite
corners atz; andz, (figure 1). Cauchy had to visualize the situatibor a

more general curve in the complex plane to give his theorem in the form for a
closed curve that we know today.

4|

figure 1: curves with increasing x and y components
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If great mathematicians need to think visually, why do we keep such thinking
processes from students?

2.2 The weakness of visualization

Visualization has its distinctive downside. Theoblem is that pictures can
often suggest falséheorems. For instance, was long believed in the
nineteenth century that continuous functions have at most a finite number of
points where they may be non-differentiable. The idea that a function could be
continuous everywhere and differentiable nowhwm&s too strange to be
contemplated.

Likewise, graphical methods were often usedtove analytic theorems.
For instance, itwas considered satisfactory to give a vispabof of the
intermediate value theorem that a continuous function on an intgd!
passed through all the values between f(a) and f(b). The swaseconsidered
as a “continuous thread” so that if it is negative somewhere and positive
somewhere else it must pass through zero somewhere in between (figure 2).

Yet we know that the function X[=x2-2 defined only on therational
numbers is negativlor x=1, and positivdor x=2, but there is naational
numbera for which f(@)=0. Thus visualization skills appear to fail us. Life is
hard.

But not so hard. Whathas happened is that the individual has inadequate
experience of the concepts psovide appropriate intuitions. In thisase a
possible source ofppropriate intutions might be the numerical solution of
equations on a computer where precise solutiongaedy found. Asmost
computer languages represent “real numbers” onkat@nal approximations
this may provide an intuitive foundation for the need to prove the intermediate
value theorem rigorously.

A

f(b)>0, the
curve is above
the axis

f(a)<0, the
curve is below
the axis

so the graph
must cross the axis
in between

figure 2 : the intermediate value theorem
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3. INTUITION AND RIGOUR
3.1 A psychological view

In his essay“Towards a disciplined intuition”,Bruner characterizes two
alternative approaches to solving problems:

In virtually any field ofintellectualendeavour one maglistinguish two approaches
usually asserted to be differerdne isintuitive, the otheranalytic ... in general
intuition is less rigorous withrespect toproof, more oriented to thevhole problem
than to particulaparts, lesserbalized with respect to justification, abhdsed upon a
confidence to operate with insufficient data. (Bruner 1974, p. 99)

Some psychologists relatBfferent modes of thinking to the two hemispheres
of the brain. Glennon (1980) summarizes the findings “from masgarch
studies” as follows:

Left hemisphere Right hemisphere
Verbal Visuospatial
Gestural (including
Logical communication)
Analytic Analogical, intuitive
Linear Synthetic
Sequential Gestalt, holist
Simultaneous &
Conceptual similarity Multiple processing
Structural Similarity

figure 3: charactistics of the hemispheres of the brain

Other researclshows that théreakdown is not always related in this precise
physical way:

Special talents ... can reside in the right brain or in the left. Clearly what is important is

not so much where thingselocated, buthat specific brairsystemshandle specific

tasks. (Gazzaniga 1985)
However, the principle underlying different modes of thinking remains, and
we shallrefer tothese as the operations of the “metaphorical left ragiait
brains”, which may reside in these hemispheres in many individuals, but may
be located elsewhere in others. Témastence ofdifferent modes of thought
suggests a distinction betweantuitive thought processes and the logical
thought demanded by formal mathematics. Intuition involvesrallel
processing quite distinétom thestep by step sequential processnegjuired
in rigorous deduction. An intuition arrives whole in the mind and it may be
difficult to separate the components into a logical deductive order. Indeed, it is
known that visual information is processed simultaneously; onlyehelt of
this processing is made available to the conscious self, not the process by
which the gestalt is formed (Bogen 196&azzaniga 1974). Taken to
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extremes, thisuggestshat the logic of mathematics may not be well served
by an intuitive approach.

On the other hand, a purely logical view is also cognitively unsuitable for
students:

We have all been brainwashed by theleserved respect given to Greek-type sequen-

tial logic. AlImost automatically curriculunbuilders and teachers try to devisgical

methods of instruction, assumiriggical planning, ordering,and presentation of

content matter ... They may have trouble conceiailitgrnativeapproacheshat do not

go step-by-step down a linear progressionit can be stateflatly, however,that the

human brain is not organised or designed for linear, one-path thought.
(Hart, 1983, page 52)

... there is no concept, no fact in educatimoye directly subtle than this: the brain is
by nature’s design, an amazingly subtle and sensitive pattern-detecting apparatus.
(ibid. page 60)

... the brainwas designed bwvolution to dealwith natural complexity, noheat

“logical simplicities” ... (ibid. page 76)
There is much evidence to show that the most powerful way to use the brain is
to integrateboth ways of processing: appealing to tfreetaphorical)right
brain to give global linkages and unifying patterns, whilst analysing the
relationships and building up logical inferences between concepts wilifithe
This requires a nevsynthesis of mathematical knowledge that gives due
weight to both ways of thought. Iparticular, it needs an approach which
appeals to the intuition and yet can be given a rigorous formulation.

3.2 Geometric concepts need not be intuitive

One of the reasons why the teaching of the calculus disarray is that
concepts which expert mathematicians regard as intuitive are not “intuitive” to
students. The reason is quite simple. Intuition is a global resonance in the
brain and it depends on the cognitive structure of the individual, whitidrin
is also dependent on the individual’'s previous experiefileere is no reason
at all to suppose that the novice will have the same intuitions asxihert,
even when considering apparently simple visual insigitsthematical
education researcBhows thatstudents’ ideas of many conceptsnist what
might be expected.

For example,because thdormal idea of a limit proves difficult to
comprehend in the initiabtages of the calculus, it is usualigtroduced
through visual ideassuch as the derivative beingeen as thdimit of a
sequence of secants approaching a tangent.

Empirical researchshows that the student hasnamber of conceptual
difficulties to surmount. For instance, Orton (1977) reported the following
responses from 110 calculus students:
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When questioned what happens to the sed2@tsen a sketched curve as the pdqt
tends toward$® on the circle, 43studentsseemed incapable, evaevhen strongly
prompted, to see that the process led to the tangent to the curve:

Y
A
Q

o) > X

figure 4 : secants and the limiting tangent

There appeared to be a considerable confusidimainthe secanwas ignored bymany
students, thewppeared only téocustheir attention on thehord PQ, despite thdact
that the diagramand explanation were intended to try itsure that this did not
happen... Typical unsatisfactory responsesncluded : “the linegets shorter”, ‘it

(LN 11

becomes a point”, “the area gets smaller”...
A similar question was asked in Tall (1986a):

As B-Athe line through

ABtends to the tangeT. A

figure 5 : a secant “tending” to a tangent

Of a sample of nine 16 year old students interviewed in deptpasof a
larger project), four said the statement was "true” but linked the syBibd\

to vector notationand visualizedB as moving toA, along the line BAFor

them the line (segmentBA certainly “tends” to the tangent, but in a
completely unexpected sense. Meanwhile, another student considered the
statement “false” because “waff at infinity the line AB and tangeniA T

would always be a long wagpart no matter howlose A and B become”.

Thus it is possible also to have &ancorrect” response for a vergensible
reason.
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In Tall (1986), a question to investigate the intuitive nature of the limiting
process was given to 160 students about to start a calculus course in the UK, of
whom 96 had already had some calculus experience (figure 6).

Only 16 students (10%) obtained both the vdttg for the gradient of AB
and 2 for the tangentyhilst 44 (24%) obtainedkg-1)/(k-1) and 2. After the
first two months of thecalculus course, the numbers changadily at all to
17 (11%) and 38 (24%) respectively. Of these, amlg student on there-
test (who had already had calculus experiencepaecgtudent on the post-test
allowed k to tend to one to finck+1l tends to 2. On interviewingther
students, it waslear that no limiting idea occurred to them. One who found
the gradient oAB to equak+1 could see visually that the gradient/oT was
about 2. It was suggested thatBagot close toA, sok would get close to 1
and k+1 would get close to 2. | wetemember theamazement on his face
when he realized this for the first time.

AY T On the graphy=x2, the point
k2 B A is (1,1), the poinB is (k,k2)
andT is a point on the tangent to
the graph aA.

(i) Write down the gradient of

the straight line throughA, B ...
A

(i) Write down the gradient
/ 1 k > of AT ...

/
Explain how you might find the gradient Afl from first principles.

figure 6 : is the limit concept intuitive?

In this experiment apontaneousmit concept did not occur tany pupil with
no calculus experience. This gives no support to the idea thaetmetric
limit is an intuitive concept.

On the contrary, many other research investigations point to serious
conceptual problems with the limit concept (Schwarzenberger & Tall 1977,
Cornu 1981, Tall & Vinner 1981, Sierpska 1987). Students have difficulties
because of the language, which suggesthéon that a limit is “approached”
butcannot be reached hey have difficulties with the unfinished nature of the
concept, which gets close, but newsems toarrive. Theyhave evermore
difficulties handling the quantifiers if the concept is defined formally.
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3.4 A new kind of intuition for the calculus

If we are to solve thehasm that occurs istudent’'sunderstanding of the
calculus, then | hypothesise that we must find a way that is cognitively
appealing to the student at the time the study commences, yet has within it the
seeddor understanding the formalubtleties that occuater. My analysis of

the difficulty is that we will certainly not do this by making thencepts
simpler.The alternative is to make them more complicated!

This is not as foolish as it sounds. The idea is to appeal to the visual
patterning power of the metaphorical right brain,sirch a way that itays
down appropriate intutions to service the logical deductivity of the left.

The reason why nineteenth century mathematicians found the concept of an
everywhere continuous, nowhere differentiable function unintuitive was
simply that they had not met a friendly example. Nor, | believe, have many of
our current generation of professiomahthematicians. On one occasion |
asked all the members of an internationally known mathematics department if
they could furnish me with a simple proof of teeistence of areverywhere
continuous nowhere differentiable function. None of them could do this on the
spot, though two could name a book where a proof could be found and one
was even able to give the page number! | was equally unable to forrautdite
a proof at the time. If we professionals are so unable to give a meaningful
explanation of a concept, what hope is there for our students?

The answer lies in effective use of visualizatitangive intuition forformal
proof, as | shall now show.

4. A LOCALLY STRAIGHT APPROACH TO THE CALCULUS

Given that the concept of limgeems such amnsatisfactory cognitive starting
point for the study of calculus, and attempts at making it geometrically
“intuitive” also fail, we need a subtly different approach. Thispassible
through an amazingly simple visual device. We know the gradient of a straight
line y=mx+b is just the change ig-coordinate divided by the corresponding
change inx-coordinate, but this failfor a curved graph. The answer is to
magnify the picturelf a sufficiently tiny part of the graph is drawn highly
maghnified, thermost of the familiar graphs look (locally) sraight

4.1 Local straightness

Drawing graphs accurately by hand is a major activity. But once stuukares
some experience of drawing graphs, a graph-plogiregyram can be used to
magnify the picture. This is best done with a plotter with (at least)ghaph
windows: one for the original scale graph, the other to see a magnified smaller
portion (figure 7).
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Given a little time to experiment students will hypothesise thantbee a
graph is magnified, thdess curved it gets. When it is suitably highly
magnified, it will looklocally straight.

Fix)=5inx

e . 28

-4
-8 .9

@.8

e

%.8 % 1.4
s g
y=@ B41471

Choose: )

F:new function_ _R:range
T:transfer small window
C:cursor mode E:end

figure 7: a locally straight curve (magnified a little)

These students now hawesignificantly different mind sdtom traditional
students. They are able tasttheir eye along a graph arsgeits changing
gradient. Their visual intuition is sharper.

4.2 Non-locally straight graphs

Students just given simple examples of locally straight grapédikely to be
dangerously misguided:or, just as nineteenth century mathematiciarese
convinced by their limited experience thahost” graphs aredifferentiable
“almost everywhere”, limited unguided experimentation can easily lead to the
belief that all graphs are locally straight.

So we must make the experience more complicatexmnediately— before
the mind is set. If asked to suggest graphs waremot locally straight, my
experience is that students find it very difficult to make the first stepoBcg
one or two examples are given, the floodgates open. It is noprefgrence,
in the first lessonto look at graphs likg=|x| or y=|sinx|, or y=|x2-x| to see
that they have “corners” which magnify to two half-lines wilifferent
gradients meeting at a point. It is also easy to jazz these up a little to add a tiny
graph likey=|sin10&|/100 to a smooth graph to get, say

y = sirx + |sin10&|/100

which looks smooth, like sk} to a normal scale, ydtas cornerswhen

magnified by a factor 100 or so.

-9-
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It is also interesting to focus on points where a graph wsuillate
strangely, such as X(=x sin(1k) at the origin (with f(0)=0), oreven
g(X)=(x+|x])sin(1k). The latter is locally straight in one direction at the
origin, but oscillates wildly in the other.

4.3 Nowhere differentiable functions

Even exhibiting curves with corners giviesdequate intuition. We mutike

our courage in botthands and go the whole way. Tl&raphic Calculus

software (Tall 1986, Talkt al 1990) includes a model of agverywhere

continuous, nowhere differentiable function callds& blancmangdunction

after a custard pudding with a similar shape. The function is simply so

wrinkled that, wherever it is magnified it still looks wrinkled (figure 8).
Flxd=bl{x>

@.7
maan.z16

@ 8.68

-8 .3 w=@, 333333
y=@, 666667

Choose: )

F:new function_ _R:range
T:transfer small window
C:cursor mode E:end

figure 8: a highly wrinkled function that is nowhere locally straight

The power of this function, and the  Add these together:

recursive way that it is defined, is that it A y=sdx)

IS easy to give an intuitiv@roof as to

why it is nowhere differentiable. The >

argument (given in Tall 1982) is as in A v=s.0

figure 9.
Similarly, the sum can be broken down >

into the sum of the first two saw-teeth,

plus the sum of the thirdfourth, fifth

etc. The sum of the first two is tisecond AAAAAAAA

A y=s2(x)

approximation to the blancmange, the etc...

sum of the remainder is guarter-size to get theblancmange function.
figure 9
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blancmange. In general the blancmange cansben as being theth
approximation with a 1/2 size blancmange added. This is why it is so
wrinkled. It has blancmanges growing everywhere!

Once it is understood that an everywhere wrinkled gnggibl(x) can be
constructed, it is easy to see that the graph

n(x)= bl(1000)/1000

Is a very tiny wrinkle indeed (it is smaller than 1/1000, and shlyws up
under magnification of a 100 or so0). In fgetsinx looks just likey=sinx+n(x)
but the first is locally straight and theecond lookswrinkled under high
magnification.

Thus, by visualizing, we have broken the fetters of visualization. We can
envisage two graphs, which look the exactly the same at normal magnification,
one differentiableeverywhergone differentiableaowhere..

4.4 Enactive gradients

Once the idea of local straightness is established, all the standard derivatives
can be conjectured blpoking at the gradient of the graphs. In addition to
using the computer, it is possible darry the action out using a simple tool -
designed by the School Mathematiesoject in England — and called the
gradient measurerThis is just a circulampiece of transparent plastic with a
diameter marked, which can turn around its centre. It is affixedntmther
transparent piece of plastic (by slotting into lips which overlapdibeneter)

on which is marked a verticalller in units, one unit horizontally awayom

the centre.

rotating gradient
disc easuer

\_ J
figure 10 : a tool for measuring gradients

Using the gradient measurer, a student can place it over a point grathe

rotate the disc until the marked diameter is visually in the direction of the
graph at that point, then read off the gradient. Thlns or he can move the
measurer along the graph and enact the changing gradient, as well as obtain
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approximate numerical results. (Presupposing, of course, that the graph is a
faithful representation of the gradient, both in terms of having the gaamed
y-scale and also not having any tiny wrinkles that cannot be seen at this scale.)

4.5 Computer generated gradients
It is an easymatter to progranthe computer to draw the numerical gradient

Hxre)-fx) X+Cc'f X fora fixed, but small, value af. This can be done in such a way

that the student can superimpose a conjectured graph to compare with it. In
this way it is possible to conjecture what the derivative of simple functions
will look like. All the standard functions can be investigated in this way.
fix)=sinx
from x=—w to o

gradient funcition
{Ffmtrndy-Fiudsro

et i for

g=1s 18

Touch: G to draw gradient function
LGPHaCE:pause S:isliow WMimedium Fitast
i-9:modity number of points {now 17

figure 11 : visualizing the global gradient function

By using this approach, the seed is sown that the gradient changesiasan
of X...

5. DIFFERENTIAL EQUATIONS : UNDOING LOCAL
STRAIGHTNESS

5.1 (First order) differential equations

First order differential equations tell us the gradigithx=f(x,y) of a solution
curve. Because the curve has a derivative (equalxig) fat (x,y)), it mustbe
locally straight. So an approximate solution may be constructed by building up
curves out of tiny line segments having thi@ection specified by the
differential equation.

- 12 -
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5.2 sketching solutions in an enactive computer environment

Sketching solutions of a differential equation
d
o = ftxy)
by hand is a complicated process. But theks may beshared with a
computer. Thesolution sketchefTall 1989) does this by showing a short line
segment centred at a pointy) with gradient fX,y) (figure 12).

dysdx=8.5y

ine segmen
with gradient givm 4

differential equation N
_/\§x x=1.5088

y=2.8888

dyusdx=
1.8888

%}iﬂ_ﬂ:moue (Btepliil/ it |JdildY: segment
ALV an lear
u

nction ange |[Yariables [Muit

figure 12: the solution sketcher

The line segment may be movadound, either using the mouse oursor
keys. As this happens the segment takes up dihection given by the

differential equation @dx=f(xy). Clicking the mouse or touching tfePACE

bar leaves a copy of the segment at theerent position, allowing the user to
build up a solution by following the direction specified ineractive way By

this | mean that the user carries out the physical act of following a solution
curve, whilst the computer calculates the gradient.

All the usual formal theory about tlexistence and uniqueness of solutions
arises through enacting the solution process physically, provipawvgerful
intuitions. There is a unique solution through every pomxy)( and it
continues as long as the equation continues to specify the required direction.

Figure 20 shows a solution constructed in this way. It is superimposed on a
whole array of linesegments whose gradierdse given by the differential
equation, showing thglobal trends of other possible solutions.

- 13-
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dy~-d=x=8.5y

x=1.5888
A y=2.86888
i dysdx=
: ¢ 1.8888
e B G o e
% SR
s s ) s s ;’;, ’5‘;‘ "z; s s s s

tmove {(Step
irection field
unction [lange

17163 BEWdiIMY:segment
ream—line 3 ahear
Jariables Hrid uit
figure 13 : constructing a solution of a differential equation
5.3 Practical activities - enactive visual

Although the gradient measurer (figure 10 above) is not a viable tool to use
for drawing solutions, it can be used to check that a solution hasdqoéed
gradient everywhere, thus confirming that differevdys of performing the
same process give similar results. Intuition is always suppanted strongly
when different methods tell the same story.

5.4 Functions differentiable once but not twice...

Solving differential equations such as

d

= = bl
where the right hand side is continuous, but not differentiable, gives a solution
curve y=F(x) whosegradient satisfies Hx)=bl(x). Thus the function F is
differentiable once, but not twice. Repeating the process several times can give
a function which is differentiable times but notn+1, enabling the mental
imagery to be developed to encompass such functions.

5.5 Higher order differential equations

Visualization of secondrder differentialequations can proceed insamilar
way, but it no longer gives unique solutions through each point. Aggines
intuitive support to later formalities. The origin@raphic Calculussoftware

(Tall 1986) usesthe theory that asecondorder differential equation, for
instance,
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dzy
dx2
can berewritten usingv=dy/dx to get two simultaneoudirst order
differential equations:
dv/dx=-x, dy/dx=v.
The solutions are simply curves x\)y) space where the tangent direction
(dx,dv,dy) satisfies
dv=-xdx, dy=vdx.
Thus a solution is a curve ix,{,y) spacefound by following this tangent
direction and this can be done by computer software to produce pictures like
those of the parametric curves above.

= X

6. INTEGRATION
6.1 The “area” under a graph

Integration is the idea of “cumulative growth”, which is usuatigen as
calculating the area “under” a curve. Thus can peeformed using thin
rectangular strips, or methodsuch as the trapezium o&impson rule.
Visually, by taking a larger number of strips, it becomes apparent that sum of
strip-areas is likely to give the value of the area under the curve. However,
flexible software may be usefr all kinds of investigations to givenore
powerful intuitions. For instance, mostudents, and not a few teachers,
believe that the area is “positive above, negative below”, but if the sign of the
step is negative, the reversetise. Figure 2lhas a negative step and a
negative ordinate in the range working backwafidsn 2t to 1, giving a
positiveresult when the curve is below thexis. Although thisseemsmore
complex than just giving a simple rule, g@asily provides a complete mental
picture of the fourpossible combinations of sign of step-direction and
ordinate, with the dynamic movement giving powerful intuitions linking with
signed arithmetic.
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Fi{x)=sinx
from x=8 to 2Z2n

Hreas Hix
%tﬂm
by gy

negative step

“—<tep

o 2 e g

Mid ordinate
2. 8238

2 J’
negative area calculated

-y ordinate from right to left

Choogse: L.¥4xs L. BY S Z.both
C.oaloulate ares D.draw ares funcition
2.input integral formulas 3

H.new rangs F.new function E.end

figure 14: negative step and negative ordinate gives a positive area calculation
6.2 The “area-so-far” function

The area-so-far graph may be drawn by plotting the value otuhwmilative
area calculationffom a fixed point to a variable point. Figure 2Bows the
superimposition of two area calculations, fifsbm x=0 to x=-5 with the
negative step -0.1, then froxa0 to the right with positive step 0.1. Notice the
cubic shape of the dots of tleea curve, which experts will recognize as
y=x3/3. But we rarely consider this foregativex.

2
FixI=x

from ==—5 to 5 area function

the right from

Mid ordinate

area function
to the left

Touch: Erequal step Hivrandom
SPACE:pause S:siow Mimedium Fifast
i~-9irveduce step-size

%
%

figure 15: the area function from x=0 in both directions
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7. UNDOING INTEGRATION : THE FUNDAMENTAL THEOREM
7.1 Numerical Gradients and Areas as Functions

There are many programs around that will draw numerical gradients or
numerical areas, but theaee usually just @equence of points plotted on the
screen. An area graph plotted as in figure 15 simply recordsuimeilative

area calculations pictorially and does nemember them in any way. But the
area under a graph of a given function, frama to x=Db, with a given step,

sayh, is calculated by a straightforward computer procedure. Given a suitably
fast processor this can be calculated almost instantaneously and may be
considered as a function depending on the graph and the valabslof

In the Function Analyser (Tall 1989) the expression:

areaéxpr, a, b, h)
is interpreted as the area under the graph given by the expresgiprirom
x=a to x=b using the mid-ordinate approximation with step-widti hus:
area(sim, 0x,0.1)
Is the area unde/=sinx from 0 tox with step-width 0.1Such isthe power of
the Archimedes computer in Britisschools that thigraph can be drawn in
lessthan threesecondswith 100 intermediate points eackquiring an area
calculation for up to 50 strips.

The numerical area is now truly fanction which may be numerically
differentiated like any other function. Figure 2Bows thearea function
area(blk),0,s) under the blancmange function from Oxtasing strip-width
s=0.05. (The area function is the rather bland looking increasing function, not
the pudding-like blancmange).

uy=areatblix’, 8,x,5873

4y

[§unction

gasnyrst

ransform
unngrea
tep:188
tradians
arint

- Muit - :
figure 16: the area function for the blancmange and its derivative
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Of course, this graph is not the exact area function, but it is a good-looking
approximation to it — as good as one could hope to get on a computer screen.
Notice that it looks relatively smooth — which it is, if one ignores the
pixellation problem —because thederivative of the exact area is the
blancmange function. The exact area function for the blancmange is a function
which is differentiable everywhere once and nowhere twice!...

The other graph in figure 17, by the way, may look like lencmange
function, but it is actually the graph of

area(blk),x,x+w,h)/w

(the numerical derivative of the numerical area function forbthacmange).
Even though the blancmange function is nowhere differentiablearga
function is quite smooth and differentiable everywhere precisely once.

7.2 Stretching the imagination for the fundamental theorem of the
calculus

One way to visualize the fundamental theorem is to imagine a tiny part of the
graph stretched horizontally (figure 17). In many cases the graph of a function
stretches out to look flat — the more it is stretched, the flatter it gets.

A

yd

/ a

b > a b

4—& < >
expand horizontal scale/

figure 17 : stretching a graph horizontally

This is easy tseewith a graph drawing programsing a thinx-range and a
normaly-range to stretch the graph horizontally in a standard graph window.
Figure 18 shows that if the area from a fixed point a to a variable yant

A(X), then the area froma to x+h is A(x+h), so the change in arédeom X to
x+h is A(x+h)—AXx).
If the strip fromx to x+h is approximately a rectangle width height f),

then its area is

A(x+h)—-A(x) = f(x)h
giving

A(x+h)-A(X)

h =1

(X).
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A

A(xth)—A(X) /

A(X)

/
a X x+h -

figure 18 :the change in area

As h gets smaller, the graph gets pulled flatter, the approximationbgétsr,
giving intuitive foundation for thdundamental theorem of the calculus

A'(x) = f(x).
7.3 From intuition to rigour

A formal proof of the fundamental theorem requires the notion of continuity.
This notion is usually confused intuitively by students, teachers and
mathematicians alike. Ask anyone with some knowledge of the concept to
explain what it means and the likely answer is that is is a function vgnapé

has “no gaps” — itgraph can be drawn “without taking the pencil off the
paper” etc, etc. (Tall & Vinner 1981). Thesd#eas are not the intuitive
beginnings of continuity but ofconnectedness” which is mathematically
linked, but technically quite different.

Continuity can be seen tarise from the horizontal stretching of graphs in
the fundamental theorem. Consider a simplified model of what is happening in
stretching the graph to confine it within a horizontal line of pix8lgppose
that graph picturéhas middlex-value x=x, and the point Xp,f(Xo)) on the
graph is in the middle of a pixel whose upper and lower valuesxa)ed(@nd
f(xo)te. To fit the graph in a horizontal line of pixels means finding a skaall
range fromxy-d to Xg+d so that for any in this range the value of X lies in
the “pixel range” betweenxf)—e and fo)+e (figure 19).

This gives the formal definition of continuity:

The function f is continuous &} if, givenany specified erroe>0, there can béound

a (small) distancd such that whenevaeris betweernx,-d andx,+d, so f§) is between
f(x)—e and fk,)+e.
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Xo-d Xo Xo+d
figure 19 : the concept of continuity through horizontal stretching

The ramifications of this definition take months, even years, to understand in
full, but it has an appealing intuitive foundatica.continuous function is one
whose graphhas the property that any suitablytiny portion stretched
horizontally will pull out flat.

8. Conclusions

By introducingsuitably complicatediisualizations of mathematical ideas it is
possible to give a much broader picture of the possible ways in whicepts
may be realized, thus giving much more powerful intuitions than in a
traditional approach. It is possible to design enactive software to allow
students to explore mathematical ideas with the dod of being both
immediately appealing to students and also providing foundatcmmaepts on
which the ideas can be built. By exploring examples which workeaathples
which fail, it is possible for the students to gain the visual intuitions necessary
to provide powerful formal insights. Thus intuition angour need not be at
odds with eaclother. By providing a suitably powerful context, intuition
naturally leads into the rigour of mathematical proof.
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