
Published  in Visualization in Mathematics (ed. Zimmermann & Cunningham),
M.A.A., Notes No. 19, 105–119 (1991).

Intuition and rigour :
the role of visualization in the calculus

David Tall
Mathematics Education Research Centre

University of Warwick
U.K.

1. Introduction

Visual intuition in mathematics has served us both well and badly. It suggests
theorems that lead to great leaps of insight in research, yet it also can lead up
blind alleys of error that deceive. For two thousand years Euclidean geometry
was held as the archetypal theory of logical deduction until it was found in the
nineteenth century that implicit visual clues had insinuated themselves without
logical foundation: such as the implicit idea that the diagonals of a rhombus
meet inside the figure, when the concept of “insideness” is not formally
defined in the theory. Subtleties such as these caused even more pain in the
calculus. So many fondly held implicit beliefs foundered when analysis was
formalized: comfortable feelings about continuous functions and the ubiquity
of differentiable functions took a sharp jolt with the realization that most
continuous functions are not differentiable anywhere. Once the real numbers
had been axiomatized through the introduction of the completeness axiom, all
intuition seemed to go out of the window. It is necessary to be so careful with
the statement of theorems in formal analysis that any slight lack of precision is
almost bound to lead to falsehood. In such an atmosphere of fear and
suspicion, visual mathematics has been relegated to a minor role – only that
which can be proved by formal means being treated as real mathematics.

Yet to deny visualization is to deny the roots of many of our most profound
mathematical ideas. In the early stages of development of the theory of
functions, limits, continuity &c, visualization proved to be a fundamental
source of ideas. To deny these ideas to students is to cut them off from the
historical roots of the subject.

In this article is summarized research into visualization in the calculus over
the last one and a half decades. It considers the strengths and weaknesses of
visual imagery and relates this to the notions of intuition and rigour. It shows
that visual ideas often considered intuitive by an experienced mathematician
are not necessarily intuitive to an inexperienced student, yet apparently more
complicated ideas can lead to powerful intuitions for the rigours of later
mathematical proof. The theory of calculus is reconceptualized using the
notion of “local straightness” – that a differentiable function is precisely one
which “looks straight” when a tiny part of the graph is magnified. This gives a
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visual conception of the notion of a differential, which gives intuitive meaning
to solutions of differential equations.

Research into mathematics education shows that students generally have
very weak visualization skills in the calculus, which in turn leads to lack of
meaning in the formalities of mathematical analysis. This paper, based on a
number of earlier papers (Tall 1982-1989), suggests a way to use visual ideas
to improve the situation.

2.1 The value of visualization

In mathematical research proof is but the last stage of the process. Before
there can be proof, there must be an idea of what theorems are worth proving,
or what theorems might be true. This exploratory stage of mathematical
thinking benefits from building up an overall picture of relationships and such
a picture can benefit from a visualization. It is no accident that when we think
we understand something we say “oh, I see!”.

A good example is the famous Cauchy theorem in complex analysis that
states that the integral of an analytic function round a closed curve which
encloses no singularities is zero. When Cauchy stated an early version of this
theorem, he thought of a complex number z=x+iy analytically in terms of its
real and imaginary parts. By analogy with the real case, he defined the
contour integral:

f(z) dz
z1

z2

between two points z1 and z2 along a curve whose real and imaginary parts are
both either monotonic increasing or decreasing. As a formal generalization of
the real case, this restriction on the type of curve is natural. But if we open
our eyes and looks at a picture, we see that such graphs (for x and y
increasing) are a restricted set of curves lying in a rectangle with opposite
corners at z1 and z2 (figure 1). Cauchy had to visualize the situation for a
more general curve in the complex plane to give his theorem in the form for a
closed curve that we know today.

z1

z2

figure 1: curves with increasing x and y components
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If great mathematicians need to think visually, why do we keep such thinking
processes from students?

2.2 The weakness of visualization

Visualization has its distinctive downside. The problem is that pictures can
often suggest false theorems. For instance, it was long believed in the
nineteenth century that continuous functions have at most a finite number of
points where they may be non-differentiable. The idea that a function could be
continuous everywhere and differentiable nowhere was too strange to be
contemplated.

Likewise, graphical methods were often used to prove analytic theorems.
For instance, it was considered satisfactory to give a visual proof of the
intermediate value theorem that a continuous function on an interval [a,b]
passed through all the values between f(a) and f(b). The curve was considered
as a “continuous thread” so that if it is negative somewhere and positive
somewhere else it must pass through zero somewhere in between (figure 2).

Yet we know that the function f(x)=x2-2 defined only on the rational
numbers is negative for x=1, and positive for x=2, but there is no rational
number α for which f(α)=0. Thus visualization skills appear to fail us. Life is
hard.

But not so hard. What has happened is that the individual has inadequate
experience of the concepts to provide appropriate intuitions. In this case a
possible source of appropriate intutions might be the numerical solution of
equations on a computer where precise solutions are rarely found. As most
computer languages represent “real numbers” only as rational approximations
this may provide an intuitive foundation for the need to prove the intermediate
value theorem rigorously.

a
b

f(b)>0, the 
curve is above 

the axis

so the graph
must cross the axis

in between

f(a)<0, the 
curve is below 

the axis

figure 2 : the intermediate value theorem
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3. INTUITION AND RIGOUR

3.1 A psychological view

In his essay “Towards a disciplined intuition”, Bruner characterizes two
alternative approaches to solving problems:

In virtually any field of intellectual endeavour one may distinguish two approaches
usually asserted to be different. One is intuitive, the other analytic ... in general
intuition is less rigorous with respect to proof, more oriented to the whole problem
than to particular parts, less verbalized with respect to justification, and based upon a
confidence to operate with insufficient data. (Bruner 1974, p. 99)

Some psychologists relate different modes of thinking to the two hemispheres
of the brain. Glennon (1980) summarizes the findings “from many research
studies” as follows:

Left hemisphere Right hemisphere
Verbal

Gestural
Logical
Analytic
Linear

Sequential

Conceptual similarity

Visuospatial
(including

communication)
Analogical, intuitive

Synthetic
Gestalt, holist

Simultaneous &
Multiple processing
Structural Similarity

figure 3: charactistics of the hemispheres of the brain

Other research shows that the breakdown is not always related in this precise
physical way:

Special talents ... can reside in the right brain or in the left. Clearly what is important is
not so much where things are located, but that specific brain systems handle specific
tasks. (Gazzaniga 1985)

However, the principle underlying different modes of thinking remains, and
we shall refer to these as the operations of the “metaphorical left and right
brains”, which may reside in these hemispheres in many individuals, but may
be located elsewhere in others. The existence of different modes of thought
suggests a distinction between intuitive thought processes and the logical
thought demanded by formal mathematics. Intuition involves parallel
processing quite distinct from the step by step sequential processing required
in rigorous deduction. An intuition arrives whole in the mind and it may be
difficult to separate the components into a logical deductive order. Indeed, it is
known that visual information is processed simultaneously; only the result of
this processing is made available to the conscious self, not the process by
which the gestalt is formed (Bogen 1969, Gazzaniga 1974). Taken to
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extremes, this suggests that the logic of mathematics may not be well served
by an intuitive approach.

On the other hand, a purely logical view is also cognitively unsuitable for
students:

We have all been brainwashed by the undeserved respect given to Greek-type sequen-
tial logic. Almost automatically curriculum builders and teachers try to devise logical
methods of instruction, assuming logical planning, ordering, and presentation of
content matter ... They may have trouble conceiving alternative approaches that do not
go step-by-step down a linear progression ... It can be stated flatly, however, that the
human brain is not organised or designed for linear, one-path thought. 

(Hart, 1983, page 52)

... there is no concept, no fact in education, more directly subtle than this: the brain is
by nature’s design, an amazingly subtle and sensitive pattern-detecting apparatus.

(ibid. page 60)

... the brain was designed by evolution to deal with natural complexity, not neat
“logical simplicities” ... (ibid. page 76)

There is much evidence to show that the most powerful way to use the brain is
to integrate both ways of processing: appealing to the (metaphorical) right
brain to give global linkages and unifying patterns, whilst analysing the
relationships and building up logical inferences between concepts with the left.
This requires a new synthesis of mathematical knowledge that gives due
weight to both ways of thought. In particular, it needs an approach which
appeals to the intuition and yet can be given a rigorous formulation.

3.2 Geometric concepts need not be intuitive
One of the reasons why the teaching of the calculus is in disarray is that

concepts which expert mathematicians regard as intuitive are not “intuitive” to
students. The reason is quite simple. Intuition is a global resonance in the
brain and it depends on the cognitive structure of the individual, which in turn
is also dependent on the individual’s previous experience. There is no reason
at all to suppose that the novice will have the same intuitions as the expert,
even when considering apparently simple visual insights. Mathematical
education research shows that students’ ideas of many concepts is not what
might be expected.

For example, because the formal idea of a limit proves difficult to
comprehend in the initial stages of the calculus, it is usually introduced
through visual ideas, such as the derivative being seen as the limit of a
sequence of secants approaching a tangent.

Empirical research shows that the student has a number of conceptual
difficulties to surmount. For instance, Orton (1977) reported the following
responses from 110 calculus students:
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When questioned what happens to the secants PQ on a sketched curve as the point Qn
tends towards P on the circle, 43 students seemed incapable, even when strongly
prompted, to see that the process led to the tangent to the curve:

Q
1

2
Q

3
Q

p
T

O X

Y

figure 4 : secants and the limiting tangent

There appeared to be a considerable confusion in that the secant was ignored by many
students, they appeared only to focus their attention on the chord PQ, despite the fact
that the diagram and explanation were intended to try to insure that this did not
happen... Typical unsatisfactory responses included : “the line gets shorter”, “it
becomes a point”, “the area gets smaller”...

A similar question was asked in Tall (1986a):

A

T

B
As B→A the line through 

AB tends to the tangent AT.

figure 5 : a secant “tending” to a tangent

Of a sample of nine 16 year old students interviewed in depth (as part of a
larger project), four said the statement was ”true“ but linked the symbol B→A
to vector notation and visualized B as moving to A, along the line BA. For
them the line (segment) BA certainly “tends” to the tangent, but in a
completely unexpected sense. Meanwhile, another student considered the
statement “false” because “way off at infinity the line AB and tangent A T
would always be a long way apart no matter how close A and B become”.
Thus it is possible also to have an “incorrect” response for a very sensible
reason.
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In Tall (1986), a question to investigate the intuitive nature of the limiting
process was given to 160 students about to start a calculus course in the UK, of
whom 96 had already had some calculus experience (figure 6).

Only 16 students (10%) obtained both the value k+1 for the gradient of AB
and 2 for the tangent, whilst 44 (24%) obtained (k2-1)/(k-1) and 2. After the
first two months of the calculus course, the numbers changed hardly at all to
17 (11%) and 38 (24%) respectively.  Of these, only one student on the pre-
test (who had already had calculus experience) and one student on the post-test
allowed k to tend to one to find k+1 tends to 2. On interviewing other
students, it was clear that no limiting idea occurred to them. One who found
the gradient of AB to equal k+1 could see visually that the gradient of AT was
about 2. It was suggested that as B got close to A, so k would get close to 1
and k+1 would get close to 2. I well remember the amazement on his face
when he realized this for the first time.

B

A

k

2k

1

1 x

y T On the graph y=x2, the point
A is (1,1), the point B is (k,k2)
and T is a point on the tangent to
the graph at A.

(i) Write down the gradient of
the straight line through A, B ...

(ii) Write down the gradient
of AT ...

Explain how you might find the gradient of AT from first principles.

figure 6 : is the limit concept intuitive?

In this experiment a spontaneous limit concept did not occur to any pupil with
no calculus experience. This gives no support to the idea that the geometric
limit is an intuitive concept.

On the contrary, many other research investigations point to serious
conceptual problems with the limit concept (Schwarzenberger & Tall 1977,
Cornu 1981, Tall & Vinner 1981, Sierpin´ ska 1987). Students have difficulties
because of the language, which suggests to them that a limit is “approached”
but cannot be reached. They have difficulties with the unfinished nature of the
concept, which gets close, but never seems to arrive. They have even more
difficulties handling the quantifiers if the concept is defined formally.
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3.4 A new kind of intuition for the calculus

If we are to solve the chasm that occurs in student’s understanding of the
calculus, then I hypothesise that we must find a way that is cognitively
appealing to the student at the time the study commences, yet has within it the
seeds for understanding the formal subtleties that occur later. My analysis of
the difficulty is that we will certainly not do this by making the concepts
simpler. The alternative is to make them more complicated!

This is not as foolish as it sounds. The idea is to appeal to the visual
patterning power of the metaphorical right brain, in such a way that it lays
down appropriate intutions to service the logical deductivity of the left.

The reason why nineteenth century mathematicians found the concept of an
everywhere continuous, nowhere differentiable function unintuitive was
simply that they had not met a friendly example. Nor, I believe, have many of
our current generation of professional mathematicians. On one occasion I
asked all the members of an internationally known mathematics department if
they could furnish me with a simple proof of the existence of an everywhere
continuous nowhere differentiable function. None of them could do this on the
spot, though two could name a book where a proof could be found and one
was even able to give the page number! I was equally unable to formulate such
a proof at the time. If we professionals are so unable to give a meaningful
explanation of a concept, what hope is there for our students?

The answer lies in effective use of visualization, to give intuition for formal
proof, as I shall now show.

4. A LOCALLY STRAIGHT APPROACH TO THE CALCULUS

Given that the concept of limit seems such an unsatisfactory cognitive starting
point for the study of calculus, and attempts at making it geometrically
“intuitive” also fail, we need a subtly different approach. This is possible
through an amazingly simple visual device. We know the gradient of a straight
line y=mx+b is just the change in y-coordinate divided by the corresponding
change in x-coordinate, but this fails for a curved graph. The answer is to
magnify the picture. If a sufficiently tiny part of the graph is drawn highly
magnified, then most of the familiar graphs look (locally) sraight.

4.1 Local straightness

Drawing graphs accurately by hand is a major activity. But once students have
some experience of drawing graphs, a graph-plotting program can be used to
magnify the picture. This is best done with a plotter with (at least) two graph
windows: one for the original scale graph, the other to see a magnified smaller
portion (figure 7).
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Given a little time to experiment students will hypothesise that the more a
graph is magnified, the less curved it gets. When it is suitably highly
magnified, it will look locally straight.

figure 7: a locally straight curve (magnified a little)

These students now have a significantly different mind set from traditional
students. They are able to cast their eye along a graph and see its changing
gradient. Their visual intuition is sharper.

4.2 Non-locally straight graphs

Students just given simple examples of locally straight graphs are likely to be
dangerously misguided. For, just as nineteenth century mathematicians were
convinced by their limited experience that “most” graphs are differentiable
“almost everywhere”, limited unguided experimentation can easily lead to the
belief that all graphs are locally straight.

So we must make the experience more complicated – immediately – before
the mind is set. If asked to suggest graphs which are not locally straight, my
experience is that students find it very difficult to make the first step. But once
one or two examples are given, the floodgates open. It is now my preference,
in the first lesson, to look at graphs like y=|x| or y=|sin x|, or y=|x2-x| to see
that they have “corners” which magnify to two half-lines with different
gradients meeting at a point. It is also easy to jazz these up a little to add a tiny
graph like y=|sin100x|/100 to a smooth graph to get, say

y = sinx + |sin100x|/100
which looks smooth, like sinx, to a normal scale, yet has corners when

magnified by a factor 100 or so.
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It is also interesting to focus on points where a graph may oscillate
strangely, such as f(x)=x sin(1/x) at the origin (with f(0)=0), or even
g(x)=(x+|x|)sin(1/x). The latter is locally straight in one direction at the
origin, but oscillates wildly in the other.

4.3 Nowhere differentiable functions

Even exhibiting curves with corners gives inadequate intuition. We must take
our courage in both hands and go the whole way. The Graphic Calculus
software (Tall 1986, Tall et al 1990) includes a model of an everywhere
continuous, nowhere differentiable function called the blancmange function
after a custard pudding with a similar shape. The function is simply so
wrinkled that, wherever it is magnified it still looks wrinkled (figure 8).

figure 8: a highly wrinkled function that is nowhere locally straight

The power of this function, and the
recursive way that it is defined, is that it
is easy to give an intuitive proof as to
why it is nowhere differentiable. The
argument (given in Tall 1982) is as in
figure 9.

Similarly, the sum can be broken down
into the sum of the first two saw-teeth,
plus the sum of the third, fourth, fifth
etc. The sum of the first two is the second
approximation to the blancmange, the
sum of the remainder is a quarter-size

Add these together:
y=s0(x)

y=s1(x)

y=s2(x)

     etc...
to get the blancmange function.

figure 9
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blancmange. In general the blancmange can be seen as being the nth
approximation with a 1/2n size blancmange added. This is why it is so
wrinkled. It has blancmanges growing everywhere!

Once it is understood that an everywhere wrinkled graph y=bl(x) can be
constructed, it is easy to see that the graph

n(x)= bl(1000x)/1000
is a very tiny wrinkle indeed (it is smaller than 1/1000, and only shows up

under magnification of a 100 or so). In fact y=sin x looks just like y=sinx+n(x)
but the first is locally straight and the second looks wrinkled under high
magnification.

Thus, by visualizing, we have broken the fetters of visualization. We can
envisage two graphs, which look the exactly the same at normal magnification,
one differentiable everywhere, one differentiable nowhere...

4.4 Enactive gradients

Once the idea of local straightness is established, all the standard derivatives
can be conjectured by looking at the gradient of the graphs. In addition to
using the computer, it is possible to carry the action out using a simple tool -
designed by the School Mathematics Project in England – and called the
gradient measurer. This is just a circular piece of transparent plastic with a
diameter marked, which can turn around its centre. It is affixed to another
transparent piece of plastic (by slotting into lips which overlap the diameter)
on which is marked a vertical ruler in units, one unit horizontally away from
the centre.

rotating 
disc

gradient 
measurer

figure 10 : a tool for measuring gradients

Using the gradient measurer, a student can place it over a point on the graph,
rotate the disc until the marked diameter is visually in the direction of the
graph at that point, then read off the gradient. Thus she or he can move the
measurer along the graph and enact the changing gradient, as well as obtain
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approximate numerical results. (Presupposing, of course, that the graph is a
faithful representation of the gradient, both in terms of having the same x- and
y-scale and also not having any tiny wrinkles that cannot be seen at this scale.)

4.5 Computer generated gradients

It is an easy matter to program the computer to draw the numerical gradient
f(x+c)-f(x)

c   for a fixed, but small, value of c. This can be done in such a way

that the student can superimpose a conjectured graph to compare with it. In
this way it is possible to conjecture what the derivative of simple functions
will look like. All the standard functions can be investigated in this way.

figure 11 : visualizing the global gradient function

By using this approach, the seed is sown that the gradient changes as a function
of x...

5. DIFFERENTIAL EQUATIONS : UNDOING LOCAL
STRAIGHTNESS

5.1 (First order) differential equations

First order differential equations tell us the gradient dy/dx=f(x,y) of a solution
curve. Because the curve has a derivative (equal to f(x,y) at (x,y)), it must be
locally straight. So an approximate solution may be constructed by building up
curves out of tiny line segments having the direction specified by the
differential equation.
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5.2 sketching solutions in an enactive computer environment

Sketching solutions of a differential equation
dy
dx  = f(x,y)

by hand is a complicated process. But the tasks may be shared with a
computer. The solution sketcher (Tall 1989) does this by showing a short line
segment centred at a point (x,y) with gradient  f(x,y) (figure 12).

line segment
with gradient given by 

differential equation

figure 12: the solution sketcher

The line segment may be moved around, either using the mouse or cursor
keys. As this happens the segment takes up the direction given by the
differential equation dy/dx=f(x,y). Clicking the mouse or touching the SPACE 

bar leaves a copy of the segment at the current position, allowing the user to
build up a solution by following the direction specified in an enactive way. By
this I mean that the user carries out the physical act of following a solution
curve, whilst the computer calculates the gradient.

All the usual formal theory about the existence and uniqueness of solutions
arises through enacting the solution process physically, providing powerful
intuitions. There is a unique solution through every point (x,y) and it
continues as long as the equation continues to specify the required direction.

Figure 20 shows a solution constructed in this way. It is superimposed on a
whole array of line segments whose gradients are given by the differential
equation, showing the global trends of other possible solutions.



Intuition and Rigour : Visualization in Calculus David Tall

-  14 -

figure 13 : constructing a solution of a differential equation

5.3 Practical activities - enactive visual

Although the gradient measurer (figure 10 above) is not a viable tool to use
for drawing solutions, it can be used to check that a solution has the required
gradient everywhere, thus confirming that different ways of performing the
same process give similar results. Intuition is always supported more strongly
when different methods tell the same story.

5.4 Functions differentiable once but not twice...

Solving differential equations such as
dy
dx  = bl(x)

where the right hand side is continuous, but not differentiable, gives a solution
curve y=F(x) whose gradient satisfies F'(x)=bl(x). Thus the function F is
differentiable once, but not twice. Repeating the process several times can give
a function which is differentiable n times but not n+1, enabling the mental
imagery to be developed to encompass such functions.

5.5 Higher order differential equations

Visualization of second order differential equations can proceed in a similar
way, but it no longer gives unique solutions through each point. Again it gives
intuitive support to later formalities. The original Graphic Calculus software
(Tall 1986) uses the theory that a second order differential equation, for
instance,
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d2y
dx2  = -x

can be rewritten using v=dy/dx to get two simultaneous first order
differential equations:

dv/dx=-x, dy/dx=v.
The solutions are simply curves in (x,v,y) space where the tangent direction

(dx,dv,dy) satisfies
dv=-xdx, dy=vdx.

Thus a solution is a curve in (x,v,y) space found by following this tangent
direction and this can be done by computer software to produce pictures like
those of the parametric curves above.

6. INTEGRATION

6.1 The “area” under a graph

Integration is the idea of “cumulative growth”, which is usually seen as
calculating the area “under” a curve. Thus can be performed using thin
rectangular strips, or methods such as the trapezium or Simpson rule.
Visually, by taking a larger number of strips, it becomes apparent that sum of
strip-areas is likely to give the value of the area under the curve. However,
flexible software may be used for all kinds of investigations to give more
powerful intuitions. For instance, most students, and not a few teachers,
believe that the area is “positive above, negative below”, but if the sign of the
step is negative, the reverse is true. Figure 21 has a negative step and a
negative ordinate in the range working backwards from 2π to π, giving a
positive result when the curve is below the x-axis. Although this seems more
complex than just giving a simple rule, it easily provides a complete mental
picture of the four possible combinations of sign of step-direction and
ordinate, with the dynamic movement giving powerful intuitions linking with
signed arithmetic.
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area calculated 
from right to left.

negative 
step

negative 
ordinate

figure 14: negative step and negative ordinate gives a positive area calculation

6.2 The “area-so-far” function
The area-so-far graph may be drawn by plotting the value of the cumulative
area calculations from a fixed point to a variable point. Figure 22 shows the
superimposition of two area calculations, first from x=0 to x=-5 with the
negative step -0.1, then from x=0 to the right with positive step 0.1. Notice the
cubic shape of the dots of the area curve, which experts will recognize as
y=x3/3. But we rarely consider this for negative x.

area function 
to the left 
from x=0

area function to 
the right from 

x=0

figure 15: the area function from x=0 in both directions
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7. UNDOING INTEGRATION : THE FUNDAMENTAL THEOREM

7.1 Numerical Gradients and Areas as Functions

There are many programs around that will draw numerical gradients or
numerical areas, but these are usually just a sequence of points plotted on the
screen. An area graph plotted as in figure 15 simply records the cumulative
area calculations pictorially and does not remember them in any way. But the
area under a graph of a given function, from x=a to x=b, with a given step,
say h, is calculated by a straightforward computer procedure. Given a suitably
fast processor this can be calculated almost instantaneously and may be
considered as a function depending on the graph and the values of a,b, h.

In the Function Analyser (Tall 1989) the expression:
area(expr, a, b, h)

is interpreted as the area under the graph given by the expression expr, from
x=a to x=b using the mid-ordinate approximation with step-width h. Thus:

area(sinx, 0,x,0.1)
is the area under y=sinx from 0 to x with step-width 0.1. Such is the power of
the Archimedes computer in British schools that this graph can be drawn in
less than three seconds with 100 intermediate points each requiring an area
calculation for up to 50 strips.

The numerical area is now truly a function, which may be numerically
differentiated like any other function. Figure 23 shows the area function
area(bl(x),0,x,s) under the blancmange function from 0 to x using strip-width
s=0.05. (The area function is the rather bland looking increasing function, not
the pudding-like blancmange).

figure 16: the area function for the blancmange and its derivative
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Of course, this graph is not the exact area function, but it is a good-looking
approximation to it – as good as one could hope to get on a computer screen.
Notice that it looks relatively smooth – which it is, if one ignores the
pixellation problem – because the derivative of the exact area is the
blancmange function. The exact area function for the blancmange is a function
which is differentiable everywhere once and nowhere twice!...

The other graph in figure 17, by the way, may look like the blancmange
function, but it is actually the graph of

area(bl(x),x,x+w,h)/w
(the numerical derivative of the numerical area function for the blancmange).
Even though the blancmange function is nowhere differentiable, its area
function is quite smooth and differentiable everywhere precisely once.

7.2 Stretching the imagination for the fundamental theorem of the
calculus

One way to visualize the fundamental theorem is to imagine a tiny part of the
graph stretched horizontally (figure 17). In many cases the graph of a function
stretches out to look flat – the more it is stretched, the flatter it gets.

 

a b a b

expand horizontal scale

figure 17 : stretching a graph horizontally

This is easy to see with a graph drawing program using a thin x-range and a
normal y-range to stretch the graph horizontally in a standard graph window.

Figure 18 shows that if the area from a fixed point a to a variable point x is
A(x), then the area from a to x+h is A(x+h), so the change in area from x to
x+h is A(x+h)–Ax).

If the strip from x to x+h is approximately a rectangle width h, height f(x),
then its area is

A(x+h)–A(x) ≈ f(x)h
giving

A(x+h)-A(x)
h   ≈ f(x).
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A(x)

A(x+h)–A(x)

a x x+h

figure  18 : the change in area

As h gets smaller, the graph gets pulled flatter, the approximation gets better,
giving intuitive foundation for the fundamental theorem of the calculus:

A '(x) = f(x).

7.3 From intuition to rigour

A formal proof of the fundamental theorem requires the notion of continuity.
This notion is usually confused intuitively by students, teachers and
mathematicians alike. Ask anyone with some knowledge of the concept to
explain what it means and the likely answer is that is is a function whose graph
has “no gaps” – its graph can be drawn “without taking the pencil off the
paper” etc, etc. (Tall & Vinner 1981). These ideas are not the intuitive
beginnings of continuity but of “connectedness” which is mathematically
linked, but technically quite different.

Continuity can be seen to arise from the horizontal stretching of graphs in
the fundamental theorem. Consider a simplified model of what is happening in
stretching the graph to confine it within a horizontal line of pixels. Suppose
that graph picture has middle x-value x=x0 and the point (x0,f(x0)) on the
graph is in the middle of a pixel whose upper and lower values are f(x0)–e and
f(x0)+e. To fit the graph in a horizontal line of pixels means finding a small x-
range from x0-d to x0+d so that for any x in this range the value of f(x) lies in
the “pixel range” between f(x0)–e and f(x0)+e (figure 19).

This gives the formal definition of continuity:
The function f is continuous at x0 if, given any specified error e>0, there can be found
a (small) distance d such that whenever x is between x0-d and x0+d, so f(x) is between
f(x0)–e and f(x0)+e.
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f(x0)+e

f(x0)-e  

x0-d  x0  x0+d  

figure 19 : the concept of continuity through horizontal stretching

The ramifications of this definition take months, even years, to understand in
full, but it has an appealing intuitive foundation: a continuous function is one
whose graph has the property that any suitably tiny portion stretched
horizontally will pull out flat.

8. Conclusions

By introducing suitably complicated visualizations of mathematical ideas it is
possible to give a much broader picture of the possible ways in which concepts
may be realized, thus giving much more powerful intuitions than in a
traditional approach. It is possible to design enactive software to allow
students to explore mathematical ideas with the dual role of being both
immediately appealing to students and also providing foundational concepts on
which the ideas can be built. By exploring examples which work and examples
which fail, it is possible for the students to gain the visual intuitions necessary
to provide powerful formal insights. Thus intuition and rigour need not be at
odds with each other. By providing a suitably powerful context, intuition
naturally leads into the rigour of mathematical proof.
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