Ramanujan

Srinivasa Ramanujan (1887-1920), matemático hindú muy enigmático. De familia humilde, a los siete años asistió a una escuela pública gracias a una beca. Recitaba a sus compañeros de clase fórmulas matemáticas y cifras de pi (v.). A los 12 años dominaba la trigonometría, y a los 15 le prestaron un libro con 6000 teoremas conocidos, sin demostraciones. Ésa fue su formación matemática básica. En 1903 y 1907 suspendió los exámenes universitarios porque solo se dedicaba a sus "diversiones" matemáticas. En 1912 fue animado a comunicar sus resultados a tres distinguidos matemáticos. Dos de ellos no le respondieron, pero sí lo hizo G.H. Hardy, de Cambridge, tenido por el más eminente matemático británico de la época. Hardy estuvo a punto de tirar la carta, pero la misma noche que la recibió se sentó con su amigo John E. Littlewood (v.) a descifrar la lista de 120 fórmulas y teoremas de Ramanujan. Horas más tarde creían estar ante la obra de un genio. Hardy tenía su propia escala de valores para el genio matemático: 100 para Ramanujan, 80 para David Hilbert, 30 para Littlewood y 25 para sí mismo. Algunas de las fórmulas de Ramanujan le desbordaron, pero escribió "...forzoso es que fueran verdaderas, porque de no serlo, nadie habría tenido la imaginación necesaria para inventarlas". Invitado por Hardy, Ramanujan partió para Inglaterra en 1914 y comenzaron a trabajar juntos. En 1917 Ramanujan fue admitido en la Royal Society de Londres y en el Trinity College, siendo el primer indio que lograba tal honor. De salud muy débil, moría tres años después.

Lo principal de los trabajos de Ramanujan está en sus "Cuadernos", escritos por él en nomenclatura y notación particular, con ausencia de demostraciones, lo que ha provocado una hercúlea tarea de desciframiento y reconstrucción, aún no concluida. Fascinado por el número pi (v.), desarrolló potentes algoritmos para calcularlo. Uno de ellos, reelaborado por los hermanos Jonathan y Peter Borwein, es así : Sean , , , . Entonces coincide con pi en más de dos mil millones de cifras.

Recta de Euler

Leonard Euler (v.) demostró que el baricentro, el ortocentro y el circuncentro de un triángulo están alineados; a dicha recta se le llama recta de Euler. Además se verifica que el baricentro está situado entre el ortocentro y el circuncentro y a doble distancia del primero que del segundo.

Regla y compás, construcciones con

Se dice con frecuencia que los geómetras, obedeciendo una norma tradicional atribuida a Platón, construían todas sus figuras planas ayudándose tan sólo de compás y regla (no graduada). Esto no es exacto. Los griegos se sirvieron de muchos otros instrumentos geométricos, entre ellos, de utensilios para trisecar ángulos. Mas, por otra parte, sí estaban convencidos de que las construcciones con regla y compás eran más elegantes que las conseguidas mediante otros instrumentos. La futilidad de sus tenaces esfuerzos por lograr métodos de este tipo en la trisección de ángulos, la cuadratura del círculo o la duplicación del cubo—los tres grandes problemas geométricos de antigüedad—no pudo ser demostrada durante cerca de 2.000 años. En siglos posteriores, los geómetras se entretuvieron en imponer restricciones todavía más enérgicas sobre los instrumentos utilizables en los problemas de construcción de figuras. El primer esfuerzo sistemático de esta naturaleza es un trabajo atribuido al matemático persa Abul Wefa, en el siglo X, donde se describen construcciones posibles con la regla y un compás «rígido», más tarde llamado, burlonamente, «compás oxidado». Se trata de un compás cuya apertura no puede modificarse. Los conocidos procedimientos para trazar la mediatriz de un segmento o la bisectriz de un ángulo son ejemplos sencillos de construcciones con regla y compás rígido. Muchas de las soluciones de Abul Wefa—y, en particular, su método de construcción del pentágono regular conocido el lado—son extraordinariamente ingeniosas y muy difíciles de mejorar. Leonardo da Vinci y numerosos matemáticos renacentistas hicieron también algunos tanteos en la geometría de compás rígido, pero, en orden de importancia, el segundo tratado sobre el tema fue Compendis Euclidis Curiosi, folleto de autor anónimo, publicado en 1673, en Amsterdam. Fue traducido al inglés cuatro años más tarde, por Joseph Moxon, a la sazón hidrógrafo real en Inglaterra. Se sabe ahora que esta obrita fue escrita por un geómetra danés, Georg Mohr, con quien volveremos a tropezar dentro de un momento. En 1694, un agrimensor londinense, William Leybourn, en un extravagante libro llamado Pleasure with Profit, trató las construcciones de compás rígido como una forma de juego matemático. En el encabezamiento de su sección dedicada al tema escribió: «Mostrando como (sin compás), teniendo solamente un Tenedor Corriente (o una horquilla semejante, que no abriré ni cerraré), y una Regla Lisa, pueden realizarse muchas deliciosas y divertidas Operaciones Geométricas.» Ya en el siglo XIX, el matemático francés Jean Victor Poncelet sugirió una demostración, más tarde rigurosamente desarrollada por el suizo Jakob Steiner, de que todas las construcciones realizables con regla y compás ordinario son realizables también con regla y un compás rígido. Tal conclusión resulta inmediatamente de otro notable teorema de ambos, a saber: que toda construcción que sea factible con regla y compás es posible con solo la regla, una vez dada en el plano una circunferencia fija y su centro. A principios del siglo XX se demostró que ni siquiera hacía falta disponer de la totalidad de la circunferencia de Poncelet-Steiner. ¡Tan sólo se precisan un arco de esta circunferencia, por pequeño que sea, y su centro! (En las construcciones de este tipo se admite que un círculo ha quedado construido cuando se determinan su centro y un punto de su circunferencia.)

Muchos matemáticos de renombre habían estudiado qué construcciones son posibles con instrumentos tan sencillos como la regla sola, la recta provista de dos puntos marcados sobre ella, la regla de dos bordes rectos paralelos, la «regla» con dos bordes rectos perpendiculares (escuadra) o bajo otros ángulos, etc. Así las cosas, en 1794 el geómetra italiano Lorenzo Mascheroni dejó maravillado al mundo matemático al publicar su Geometria del Compasso, donde demostraba que toda construcción realizable con regla y compás puede efectuarse con exclusivamente un compás móvil. Como es imposible dibujar líneas rectas con sólo un compás, es preciso admitir que dos puntos, obtenidos por interseccion de arcos, definen una recta. Todavía hoy se llaman construcciones de Mascheroni a las realizadas exclusivamente con el compás, a pesar de que en 1928 se descubrió que Mohr había demostrado el mismo teorema en una oscura obrita, Euclides Danicus, publicada en 1672 en ediciones danesa y holandesa. Un estudiante danés dio con el libro en una librería de lance de Copenhague, y se lo mostró a su profesor, Johannes Hjelmslev, de la Universidad de Copenhague, quien inmediatamente comprendió la importancia del descubrimiento. Hjelmslev la publicó en edición facsímil, acompañada de una traducción al alemán, el mismo año de 1928.

Un famoso problema del libro de Mascheroni es el llamado «problema de Napoleón», porque se dice que Napoleón (v.) se lo propuso a Mascheroni. Existe un verdaderamente poco conocido pero alucinante teorema que dice que todo punto constructible mediante regla y compás puede ser obtenido también disponiendo de una coleccion ilimitada de mondadientes idénticos. Los palillos sirven para materializar segmentos rectilíneos rígidos e idénticos, libremente desplazables sobre el plano. Este curioso método de construcción fue inventado por T. R. Dawson, redactor jefe de Fairy Chess Review, y ha sido expuesto por él mismo en un artículo titulado «"Match-Stick" Geometry», en Mathernatics Gazette, Volumen 23, mayo de 1939, pp. 161-68. Dawson demuestra allí el teorema general antes citado, y demuestra también que será imposible construir mediante palillos puntos que no sean constructibles por regla y compás. Da métodos para hallar el punto medio de un segmento, la bisectriz de un ángulo, para trazar perpendiculares y paralelas a una recta por un punto dado, así como para otras construcciones suficientes para demostrar su tesis.

Regresión

Regula Falsi

Rey Pastor, Julio

Llegó a ocupar un sillón en la Real Academia de la Lengua.

Riemann

Bernhard Riemann (1826-1866). Matemático alemán a quien se debe el concepto de integral definida a partir de un punto intermedio

Rotación

Edmund Gosse atribuyó a su criado su «inmortal» cuarteto:

    «¡Oh Luna, al contemplar luminosa
    tu faz, por el cosmos presurosa,
    muchas veces fue mi sentir primero
    si admirar podré algún día tu trasero!».

El púdico hábito lunar de ocultarnos su reverso suscita la siguiente cuestión trivial: ¿gira la Luna sobre sí misma al tiempo que lo hace alrededor de la Tierra? Los astrónomos nos dirían que sí, una vez en cada revolución. Aunque cueste creerlo, tan soliviantados por esta opinión han quedado algunos hombres de reconocida inteligencia, que han llegado a publicar (por lo común, a sus expensas) largas monografías explicando que la Luna de ninguna manera puede decirse que gire sobre sí misma. (En Budget of Paradoxes, de Augustus de Morgan, se comentan algunos de estos tratados.) Incluso el gran Johannes Kepler prefirió pensar que la Luna no tenía movimiento de rotación, y la comparaba a una bola atada a una correa, volteada por encima de la cabeza. El Sol gira, argüía Kepler, para impartir a sus planetas el movimiento de traslación, y la Tierra gira sobre sí misma para inducir el movimiento de su luna. Pero como la Luna ya no tiene lunas propias más pequeñas, no tiene tampoco necesidad de rotar sobre sí misma.

El problema de la rotación de la Luna es fundamentalmente idéntico al de la paradoja de las monedas, explicada en el Capítulo 2 del Carnaval matemático de M. Gardner. Si se hace rodar una peseta sobre el contorno de otra peseta fija, manteniendo apretados sus cantos para que no haya deslizamiento, la moneda «ruleta» da dos vueltas sobre sí misma al darle una vuelta completa a la otra. Pero, ¿de veras es así? Joseph Wisnovski, redactor de Scientific American, ha llamado la atención acerca de una furiosa controversia que, hace ahora un siglo, se desató en la sección de cartas de dicha revista, durando casi tres años. En 1866, un lector preguntaba: «¿cuántas vueltas dará alrededor de su eje una rueda al rodar una vuelta completa sobre otra rueda fija de igual tamaño?». «Una», contestaron los redactores de la revista. La consecuencia fue una riada de cartas de lectores en desacuerdo. En el volumen 18 (1868), pp. 105-106, Scientific American publicó una selección de cartas tomadas de «entre más de una arroba», que mantenían el punto de vista de la doble rotación. Durante los tres meses siguientes la revista publicó correspondencia tanto de «unistas» como de «dualistas», incluyendo grabados de complejos dispositivos mecánicos que unos y otros habían construido para dilucidar definitivamente la cuestión. «Si volteásemos un gato por encima de nuestra cabeza», escribía el unista H. Bluffer el 21 de mayo de 1868, ¿girarían la cabeza, los ojos, y las vértebras del animal en torno a sus ejes respectivos? ¿Moriría el animal en la séptima vuelta?...» El volumen de correspondencia sobre el tema alcanzó proporciones tales, que en abril de 1868 los editores decidieron cerrar el debate en Scientific American, prosiguiéndolo en cambio en una nueva revista mensual, The Wheel [La rueda] dedicada enteramente «a la gran cuestión». Al menos un número de esta publicación debió ver la luz, pues en su edición del 23 de mayo, Scientific American prevenía a sus lectores que podrían adquirirla en quioscos, o por correo, al precio de 25 centavos. Quizá toda la polémica fuese una tomadura de pelo de los editores. Evidentemente, todo el debate se reduce a cómo defina uno la frase «girar en torno a su eje». Para un observador situado en la moneda fija, la ruleta da tan sólo una vuelta. Para un observador exterior, que mire desde arriba las dos monedas, la ruleta da dos vueltas. La Luna no gira sobre sí misma con respecto a la Tierra, pero sí lo hace con relación a las estrellas.

Ruffini

Paolo Ruffini (1765-1822), italiano, enunció y parcialmente demostró el teorema sobre la imposibilidad de resolver ecuaciones de 5º grado (v.) en 1798.

Russell, Bertrand

La primera vez qué Bertrand Russell se encontró con la demostración de Cantor (v.), donde probaba que no hay un aleph-máximo, y que, por consiguiente, tampoco puede haber un conjunto formado por todos los conjuntos, no le dio crédito. En 1901, Russell escribía que Cantor había sido «culpable de una muy sutil falacia, que espero poder elucidar en trabajos futuros», y que era «obvio» que tenía que existir un aleph máximo «porque si se ha tomado todo, no queda nada que añadir». Cuando este ensayo fue reimpreso dieciséis anos más tarde, en la recopilación Mysticism and Logic, Russell añadió un pie de página, pidiendo disculpa por su error. Fueron las meditaciones de Russell acerca de este error las que le llevaron al descubrimiento de su famosa paradoja relativa al conjunto de todos los conjuntos que no son elementos de sí mismos.

Se dice que la siguiente historia le ocurrió a Bertrand Russell. Estaba hablando con unos amigos (obviamente no matemáticos) y les dijo que él podría demostrar lo que le diese la gana si le dejasen aceptar como cierto que 1+1=1. Uno de sus amigos le dijo "Vale, supón que 1+1=1 y demuestra que eres el Papa." A lo cual contestó: "Mira, yo soy una persona, y el Papa también es una persona; juntos, somos 1+1 personas, o sea, una persona, luego tenemos que ser la misma."